Rational design of novel potential EGFR inhibitors by 3D-QSAR, molecular docking, molecular dynamics simulation, and pharmacokinetics studies

被引:8
|
作者
El Khatabi, Khalil [1 ]
El-mernissi, Reda [1 ]
Moukhliss, Youness [1 ]
Hajji, Halima [1 ]
Rehman, Hafiz Muzzammel [2 ,3 ]
Yadav, Rohitash [4 ]
Lakhlifi, Tahar [1 ]
Ajana, Mohammed Aziz [1 ]
Bouachrine, Mohammed [1 ,5 ]
机构
[1] Moulay Ismail Univ, Fac Sci, Mol Chem & Nat Subst Lab, Meknes 50000, Morocco
[2] Alnoorians Grp Inst, 55 Elahi Bukhsh Pk Amir Rd, Lahore, Pakistan
[3] Univ Punjab, Sch Biochem & Biotechnol, Lahore, Punjab, Pakistan
[4] All India Inst Med Sci, Dept Pharmacol, Rishikesh, Uttarakhand, India
[5] Sultan Moulay Sliman Univ, EST Khenifra, Beni Mellal 54000, Morocco
来源
CHEMICAL DATA COLLECTIONS | 2022年 / 39卷
关键词
EGFR; 3D-QSAR; Molecular dynamics simulation; ADMET prediction; M; KINASE INHIBITORS; OPTIMIZATION; VALIDATION;
D O I
10.1016/j.cdc.2022.100851
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The epidermal growth factor receptor (EGFR) is one of the most attractive drug targets against the human pancreas cancer cell line (Panc-1). In this research, forty xanthine derivatives previously identified as novel potential EGFR inhibitors were subjected to 3D-QSAR studies in order to design new compounds with high predicted activity. The generated models showed satisfactory statistical results and provided useful insights by analyzing the graphical contour maps, revealing the structural requirements that influence the activity. Consequently, four new compounds with high inhibitory activity were designed. Subsequently, molecular docking and molecular dynamics (MD) simulations of 100 ns were employed to investigate the interaction mechanism and conformational changes of the newly designed compounds at the binding site of EGFR. Moreover, these compounds were checked for in-silico pharmacokinetics prediction parameters for wet-lab applicability, showing good ADMET properties and bioavailability. The present findings might ultimately contribute to the future development of potent EGFR inhibitors.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [41] Molecular docking and 3D-QSAR studies on checkpoint kinase 1 inhibitors
    Hu, Shiyuan
    Yu, Haijing
    Zhao, Lingzhou
    Liang, Aihua
    Liu, Yongjuan
    Zhang, Huabei
    MEDICINAL CHEMISTRY RESEARCH, 2013, 22 (10) : 4992 - 5013
  • [42] Identification of potential quinoxalinone-based aldose reductase inhibitors by 3D-QSAR, molecular docking and molecular dynamics
    Zhou, Dan
    Chen, Jianbo
    Xu, Yi
    RSC ADVANCES, 2016, 6 (57) : 51716 - 51724
  • [43] Computational Modeling of Novel Phosphoinositol-3-kinase γ Inhibitors Using Molecular Docking, Molecular Dynamics, and 3D-QSAR
    Ghosh, Suparna
    Keretsu, Seketoulie
    Cho, Seung Joo
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2021, 42 (08) : 1093 - 1111
  • [44] Computational investigation of novel pyrimidine derivatives as potent FAK inhibitors via 3D-QSAR, molecular docking, molecular dynamics simulation and retrosynthesis
    El Bahi, Salma
    Boutalaka, Meryem
    El Alaouy, Moulay Ahfid
    Bouamrane, Soukaina
    Alaqarbeh, Marwa
    Choukrad, M'barek
    Sbai, Abdelouahid
    Bouachrine, Mohammed
    Lakhlifi, Tahar
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (27) : 12816 - 12829
  • [45] Pharmacophore generation, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on benzamide analogues as FtsZ inhibitors
    Tripathy, Swayansiddha
    Azam, Mohammed Afzal
    Jupudi, Srikanth
    Sahu, Susanta Kumar
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2018, 36 (12): : 3218 - 3230
  • [46] Molecular docking and 3D-QSAR studies for design and development of selective aspartate semialdehyde dehydrogenase inhibitors
    Luniwal, Amarjit
    Pavlovsky, Alexander
    Erhardt, Paul W.
    Viola, Ronald
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [47] 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors
    Balupuri, Anand
    Balasubramanian, Pavithra K.
    Cho, Seung Joo
    ARABIAN JOURNAL OF CHEMISTRY, 2020, 13 (01) : 1052 - 1078
  • [48] Design of new α-glucosidase inhibitors through a combination of 3D-QSAR, ADMET screening, molecular docking, molecular dynamics simulations and quantum studies
    Khaldan, Ayoub
    Bouamrane, Soukaina
    El-mernissi, Reda
    Ouabane, Mohamed
    Alaqarbeh, Marwa
    Maghat, Hamid
    Ajana, Mohammed Aziz
    Sekkat, Chakib
    Bouachrine, Mohammed
    Lakhlifi, Tahar
    Sbai, Abdelouahid
    ARABIAN JOURNAL OF CHEMISTRY, 2024, 17 (03)
  • [49] 3D-QSAR, docking and molecular dynamics for factor Xa inhibitors as anticoagulant agents
    Ghasemi, Jahan B.
    Hooshmand, Shabnam
    MOLECULAR SIMULATION, 2013, 39 (06) : 453 - 471
  • [50] 3D-QSAR Studies, Molecular Dynamics Simulation and Free Energy Calculation of APN Inhibitors
    Qu, Qinglian
    Tang, Xianshuai
    Kuang, Binhai
    Li, Shaohua
    Tu, Guogang
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2015, 11 (08) : 920 - 928