Effect of Carbon Nanotubes on Chloride Diffusion, Strength, and Microstructure of Ultra-High Performance Concrete

被引:0
|
作者
Rafieizonooz, Mahdi [1 ]
Kim, Jang-Ho Jay [1 ]
Kim, Jin-Su [1 ]
Jo, Jae-Bin [1 ]
机构
[1] Yonsei Univ, Sch Civil & Environm Engn, Yonsei Ro 50, Seoul 03722, South Korea
关键词
carbon nanotubes (CNTs); ultra-high performance concrete (UHPC); mechanical properties; ponding test; life service prediction; FLY-ASH; COMPOSITES;
D O I
10.3390/ma17122851
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study delved into the integration of carbon nanotubes (CNTs) in Ultra-High Performance Concrete (UHPC), exploring aspects such as mechanical properties, microstructure analysis, accelerated chloride penetration, and life service prediction. A dispersed CNT solution (0.025 to 0.075 wt%) was employed, along with a superplasticizer, to ensure high flowability in the UHPC slurry. In addition, the combination of high-strength functional artificial lightweight aggregate (ALA) and micro hollow spheres (MHS) was utilized as a replacement for fine aggregate to not only reduce the weight of the concrete but also to increase its mechanical performance. Experimental findings unveiled that an increased concentration of CNT in CNT1 (0.025%) and CNT2 (0.05%) blends led to a marginal improvement in compressive strength compared to the control mix. Conversely, the CNT3 (0.075%) mixture exhibited a reduction in compressive strength with a rising CNT content as an admixture. SEM analysis depicted that the heightened concentration of CNTs as an admixture induced the formation of nanoscale bridges within the concrete matrix. Ponding test results indicated that, for all samples, the effective chloride transport coefficient remained below the standard limitation of 1.00 x 10-12 m2/s, signifying acceptable performance in the ponding test for all samples. The life service prediction outcomes affirmed that, across various environmental scenarios, CNT1 and CNT2 mixtures consistently demonstrated superior performance compared to all other mixtures.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Effects of isothermal microwave heating on the strength and microstructure of ultra-high performance concrete embedded with steel fibers
    Li, Shuangxin
    Zhang, Yaowen
    Pan, Yunshi
    Gao, Xiaojian
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 1893 - 1902
  • [42] Utilization of recycled fine aggregate in ultra-high performance concrete: Mechanical strength, microstructure and environment impacts
    Chen, Kang
    Cheng, Shukai
    Wu, Qiaoyun
    Chen, Xuyong
    Zhao, Cheng
    Li, Shunkai
    Lu, Jianxin
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 439
  • [43] Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
    丁庆军
    ZHOU Changsheng
    张高展
    GUO Hong
    LI Yang
    ZHANG Yongyuan
    GUO Kaizheng
    Journal of Wuhan University of Technology(Materials Science), 2024, 39 (03) : 673 - 681
  • [44] Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
    Ding, Qingjun
    Zhou, Changsheng
    Zhang, Gaozhan
    Guo, Hong
    Li, Yang
    Zhang, Yongyuan
    Guo, Kaizheng
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2024, 39 (03): : 673 - 681
  • [45] Mechanical properties and microcosmic mechanism of multi-walled carbon nanotubes reinforced ultra-high strength concrete
    Kan, Deyuan
    Liu, Guifeng
    Chen, Zhengfa
    Cao, Shuang Cindy
    Lyu, Qifeng
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2023, 31 (02) : 157 - 167
  • [46] Tailoring Anti-Impact Properties of Ultra-High Performance Concrete by Incorporating Functionalized Carbon Nanotubes
    Wang, Jialiang
    Dong, Sufen
    Pang, Sze Dai
    Yu, Xun
    Han, Baoguo
    Ou, Jinping
    ENGINEERING, 2022, 18 : 232 - 245
  • [47] Hybrid effects of carbon nanotubes and steel fiber on dynamic mechanical properties of ultra-high performance concrete
    Li, Shaojie
    Yan, Jun
    Ma, Huijuan
    Lyu, Xuxu
    Zhang, Yuling
    Du, Shiguo
    MATERIALS RESEARCH EXPRESS, 2023, 10 (02)
  • [48] Tailoring Anti-Impact Properties of Ultra-High Performance Concrete by Incorporating Functionalized Carbon Nanotubes
    Jialiang Wang
    Sufen Dong
    Sze Dai Pang
    Xun Yu
    Baoguo Han
    Jinping Ou
    Engineering, 2022, 18 (11) : 232 - 245
  • [49] Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete
    Xiong, Ming-Xiang
    Xiong, De-Xin
    Liew, J. Y. Richard
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2017, 132 : 191 - 202
  • [50] Effect of steam curing system on the early mechanical property and microstructure of ultra-high performance concrete
    Wu J.
    Guo L.
    Cao Y.
    Qin Y.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2022, 52 (04): : 744 - 752