Numerical investigation on flow condensation in zigzag channel of printed circuit heat exchanger

被引:0
|
作者
Hu, Haitao [1 ]
Li, Yuhan [1 ]
Lei, Rui [1 ]
Xie, Yao [2 ]
Li, Jianrui [2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
[2] Shanghai Engn Res Ctr Space Engine, Shanghai 201112, Peoples R China
[3] Shanghai Inst Space Prop, Shanghai 201112, Peoples R China
基金
上海市自然科学基金;
关键词
Printed circuit heat exchanger; Condensation; Flow; Heat transfer; Numerical simulation; THERMAL-HYDRAULIC PERFORMANCE; FRICTIONAL PRESSURE-DROP; 2-PHASE FLOW; UNIVERSAL APPROACH; REFRIGERANT; MINICHANNELS; PREDICTION; STRAIGHT; PCHE;
D O I
10.1016/j.applthermaleng.2024.123645
中图分类号
O414.1 [热力学];
学科分类号
摘要
The printed circuit heat exchanger (PCHE) has a great potential for the application in various compact energy systems. However, the there is no existing heat transfer and pressure drop correlations on condensation in PCHE zigzag semicircular channel. In this study, the flow and heat transfer characteristics of condensation in the PCHE zigzag semicircular channel were analyzed numerically. The flow patterns of annular flow, annular wavy flow and plug flow were observed in the channel, and the flow pattern transition line correlations were developed. As the mass flux increases, the transition vapor quality from annular flow to intermittent flow decreases gradually. Both the condensation pressure drop and the heat transfer coefficient reach their peaks as the vapor quality is around 0.78, and the pressure drop decreases with the increase of saturation temperature. The heat transfer coefficient decreases as the saturation temperature increases when the vapor quality is less than 0.6, while it increases slightly as the saturation temperature increases when the vapor quality is greater than 0.6. New correlations for condensation pressure drop and heat transfer in PCHE zigzag semicircular channel are developed. The average errors of the developed condensation pressure drop and heat transfer correlations are 11.0 % and 7.9 %, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers
    Zhe-Xi Wen
    Yi-Gao Lv
    Qing Li
    Science China Technological Sciences, 2020, 63 : 655 - 667
  • [22] Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers
    WEN Zhe-Xi
    LV Yi-Gao
    LI Qing
    Science China(Technological Sciences), 2020, (04) : 655 - 667
  • [23] Experimental and numerical study of a printed circuit heat exchanger
    Chen, Minghui
    Sun, Xiaodong
    Christensen, Richard N.
    Shi, Shanbin
    Skavdahl, Isaac
    Utgikar, Vivek
    Sabharwall, Piyush
    ANNALS OF NUCLEAR ENERGY, 2016, 97 : 221 - 231
  • [24] Experimental study of propane condensation heat transfer and pressure drop in semicircular channel printed circuit heat exchanger
    Yoo, Jin Woo
    Nam, Chan Woo
    Yoon, Seok Ho
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 182
  • [25] Comprehensive Numerical Analysis on Flow and Heat Transfer Characteristics of Printed Circuit Heat Exchanger With Fins
    Lu, Peng
    Yang, Qinshan
    Wei, Jian
    Wu, Peiyang
    Huang, Hulin
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2022, 14 (07)
  • [26] Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger
    Zhao, Zhongchao
    Zhao, Kai
    Jia, Dandan
    Jiang, Pengpeng
    Shen, Rendong
    ENERGIES, 2017, 10 (11):
  • [27] Experimental investigation on heat transfer characteristics of flow boiling in zigzag channels of printed circuit heat exchangers
    Hu, Haitao
    Li, Jianrui
    Xie, Yao
    Chen, Yongdong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 165
  • [28] Experimental Study on Small Scale Printed Circuit Heat Exchanger with Zigzag Channels
    Chu, Wenxiao
    Li, Xionghui
    Chen, Yitung
    Wang, Qiuwang
    Ma, Ting
    HEAT TRANSFER ENGINEERING, 2021, 42 (09) : 723 - 735
  • [29] THE EFFECT OF FLOW CHANNEL GEOMETRY ON THERMOMECHANICAL PERFORMANCE OF PRINTED CIRCUIT HEAT EXCHANGER (PCHE)
    Jiragoontansiri, Witiwat
    Woravisuttsarakul, Teerapat
    Sae-Pueng, Rinrada
    Sukjai, Yanin
    Shirvan, Koroush
    PROCEEDINGS OF 2021 28TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE28), VOL 4, 2021,
  • [30] The Effect of Flow Channel Geometry on Thermomechanical Performance of Printed Circuit Heat Exchanger (PCHE)
    Jiragoontansiri, Witiwat
    Woravisuttsarakul, Teerapat
    Sae-Pueng, Rinrada
    Sukjai, Yanin
    JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE, 2023, 9 (02):