Stability of Navier-Stokes equations with a free surface

被引:0
|
作者
Cheng, Xing [1 ]
Zheng, Yunrui [2 ]
机构
[1] Hohai Univ, Sch Math, Nanjing 210098, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Free boundary problems; Navier-Stokes equations; Global existence; Stability; LOCAL WELL-POSEDNESS; DECAYING SOLUTION; WAVES; REGULARITY; TENSION; FLOW;
D O I
10.1016/j.jde.2024.04.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the viscous incompressible fluids in a three-dimensional horizontally periodic domain bounded below by a fixed smooth boundary and above by a free moving surface. The fluid dynamics are governed by the Navier-Stokes equations with the effect of gravity and surface tension on the free surface. We develop a global well-posedness theory by a nonlinear energy method in low regular Sobolev spaces with several techniques, including: the horizontal energy -dissipation estimates, a new tripled bootstrap argument inspired by Guo and Tice [Arch. Ration. Mech. Anal. (2018)]. Moreover, the solution decays asymptotically to the equilibrium in an exponential rate. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [41] SHOCK STABILITY ANALYSIS FOR PARABOLIZED NAVIER-STOKES EQUATIONS
    CLINE, DD
    CAREY, GF
    MATHEMATICAL AND COMPUTER MODELLING, 1988, 11 : 1133 - 1137
  • [42] STABILITY OF SOLUTIONS OF THE NAVIER-STOKES EQUATIONS BACKWARD IN TIME
    GALDI, GP
    STRAUGHAN, B
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 101 (02) : 107 - 114
  • [43] COMPARISON OF STABILITY BETWEEN NAVIER-STOKES AND EULER EQUATIONS
    施惟慧
    王曰朋
    沈春
    AppliedMathematicsandMechanics(EnglishEdition), 2006, (09) : 1257 - 1263
  • [45] Asymptotic stability for the Navier-Stokes equations in the marginal class
    Zhou, Yong
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 1099 - 1109
  • [46] Stability by rescaled weak convergence for the Navier-Stokes equations
    Bahouri, Hajer
    Chemin, Jean-Yves
    Gallagher, Isabelle
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (04) : 305 - 310
  • [47] On a free boundary problem for the stationary Navier-Stokes equations
    Bemelmans, Josef
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1987, 4 (06): : 517 - 547
  • [48] Splash Singularities for the Free Boundary Navier-Stokes Equations
    Castro, Angel
    Cordoba, Diego
    Fefferman, Charles
    Gancedo, Francisco
    Gomez-Serrano, Javier
    ANNALS OF PDE, 2019, 5 (01)
  • [49] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [50] FREE-BOUNDARY PROBLEMS FOR THE NAVIER-STOKES EQUATIONS
    BEMELMANS, J
    ASTERISQUE, 1984, (118) : 115 - 123