Expanding high ammonia energy ratios in an ammonia-diesel dual-fuel engine across wide-range rotational speeds

被引:10
|
作者
Mi, Shijie [1 ]
Shi, Zhongrui [1 ]
Wu, Haoqing [1 ]
Zheng, Liang [1 ]
Zhao, Wenbin [1 ]
Qian, Yong [1 ]
Lu, Xingcai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Key Lab Power Machinery MOE, Shanghai 200240, Peoples R China
关键词
Carbon -free ammonia; Wide -range engine speeds; Ammonia energy ratio; Combustion; Emission; Principal component analysis;
D O I
10.1016/j.applthermaleng.2024.123608
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ammonia (NH3), as a hydrogen carrier and carbon -free fuel, has garnered increasing attention for its potential to reduce carbon emissions in transportation. Due to the poor ignition characteristics of ammonia, the ammoniadiesel dual -fuel combustion mode is one of the pathways for achieving low carbon emissions in compression ignition engines. This study compared the combustion and emission characteristics of an ammonia -diesel dualfuel engine at various speeds, ranging from 900 to 1800 rpm, with an extended ammonia energy ratio of 88 %. The results showed that advancing Start of Injection (SOI) moderately could reduce NH3 emissions. Higher engine speeds showed increased indicated thermal efficiency, reaching approximately 47 % at 1800 rpm. However, maintaining the ammonia energy ratio above 80 % at higher speeds became challenging. As the ammonia energy ratio increased, unburned ammonia emissions rose, while Nitrogen Oxides (NOx) emissions gradually decreased. Furthermore, a principal component analysis (PCA) was employed to integrate control parameters and combustion/emission characteristics of ammonia combustion, comparing correlations among different parameters. The results indicated that the control elements for unburned ammonia emissions primarily involve the diesel SOI and ammonia energy ratio.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Combustion and Emission Characteristics of an Ammonia-Diesel Dual-Fuel Engine under High Ammonia Substitution Ratios
    Zhang, Shouzhen
    Yang, Rui
    Tang, Qinglong
    Lv, Zhijie
    Liu, Haifeng
    Yue, Zongyu
    Yao, Mingfa
    ENERGY & FUELS, 2025, 39 (13) : 6559 - 6571
  • [2] Numerical investigation on energy ratios and injection strategies of an ammonia-diesel dual-fuel marine engine
    Hu, Zewen
    Dong, Dongsheng
    Wei, Wenwen
    Zhang, Hanyuyang
    Wei, Feng
    Zhou, Mengni
    Li, Gesheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 522 - 536
  • [3] Optimizations of energy fraction and injection strategy in the ammonia-diesel dual-fuel engine
    Xu, Xiaoyan
    Wang, Zixin
    Qu, Wenjing
    Song, Meijia
    Fang, Yuan
    Feng, Liyan
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 112
  • [4] Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine
    Jin, Shouying
    Wu, Binyang
    Zi, Zhenyuan
    Yang, Puze
    Shi, Taifeng
    Zhang, Junhong
    FUEL, 2023, 341
  • [5] Flame characteristics and abnormal combustion of ammonia-diesel dual-fuel engine with considering ammonia energy fractions
    Chen, Lin
    Zhao, Wenkai
    Zhang, Ren
    Wei, Haiqiao
    Jiaying, Pan
    APPLIED THERMAL ENGINEERING, 2024, 245
  • [6] Investigation on combustion and emissions of ammonia-diesel dual-fuel engine in relation to ammonia energy ratio and injection parameters
    Zhou, Yuhan
    Sun, Ping
    Ji, Qian
    Ni, Xiangdong
    Wang, Meng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 100 : 713 - 726
  • [7] Experimental investigation of the effect of ammonia substitution ratio on an ammonia-diesel dual-fuel engine performance
    Liu, Junheng
    Liu, Jinlong
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [8] Simulation Study of Diesel Spray Tilt Angle and Ammonia Energy Ratio Effect on Ammonia-Diesel Dual-Fuel Engine Performance
    Zhao, Zhifeng
    Miao, Xuelong
    Chen, Xu
    Zheng, Jinbao
    Di, Yage
    Bao, Zhenjie
    Yang, Zhuo
    Energy Engineering: Journal of the Association of Energy Engineering, 2024, 121 (09): : 2603 - 2620
  • [9] Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine
    Shin, Jisoo
    Park, Sungwook
    ENERGY CONVERSION AND MANAGEMENT, 2023, 284
  • [10] Optimization of direct-injection ammonia-diesel dual-fuel combustion under low load and higher ammonia energy ratios
    Mi, Shijie
    Zhang, Jinhe
    Shi, Zhongrui
    Wu, Haoqing
    Zhao, Wenbin
    Qian, Yong
    Lu, Xingcai
    FUEL, 2024, 375