Large deviations for out of equilibrium correlations in the symmetric simple exclusion process

被引:0
|
作者
Bodineau, Thierry [1 ]
Dagallier, Benoit [2 ,3 ]
机构
[1] Univ Paris Saclay, IHES, CNRS, Lab Alexandre Grothendieck, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[2] Univ Cambridge, DPMMS, Cambridge, England
[3] NYU, Courant Inst, New York, NY USA
来源
基金
欧洲研究理事会;
关键词
Large deviations; out of equilibrium; correlations; exclusion process; relative entropy; LONG-RANGE CORRELATIONS; LOGARITHMIC SOBOLEV INEQUALITIES; QUADRATIC FLUCTUATIONS; HYDRODYNAMICS; ENTROPY; DENSITY;
D O I
10.1214/24-EJP1121
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For finite size Markov chains, the Donsker-Varadhan theory fully describes the large deviations of the time averaged empirical measure. We are interested in the extension of the Donsker-Varadhan theory for a large size non -equilibrium system: the onedimensional symmetric simple exclusion process connected with reservoirs at different densities. The Donsker-Varadhan functional encodes a variety of scales depending on the observable of interest. In this paper, we focus on the time -averaged two point correlations and investigate the large deviations from the steady state behaviour. To control two point correlations out of equilibrium, the key input is the construction of a simple approximation to the invariant measure. This approximation is quantitative in time and space as estimated through relative entropy bounds building on the work of Jara and Menezes [32].
引用
收藏
页码:1 / 96
页数:96
相关论文
共 50 条
  • [21] Symmetric simple exclusion process with free boundaries
    De Masi, Anna
    Ferrari, Pablo A.
    Presutti, Errico
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 161 (1-2) : 155 - 193
  • [22] Symmetric simple exclusion process with free boundaries
    Anna De Masi
    Pablo A. Ferrari
    Errico Presutti
    Probability Theory and Related Fields, 2015, 161 : 155 - 193
  • [23] Random Walk on the Simple Symmetric Exclusion Process
    Marcelo R. Hilário
    Daniel Kious
    Augusto Teixeira
    Communications in Mathematical Physics, 2020, 379 : 61 - 101
  • [24] COALESCING AND BRANCHING SIMPLE SYMMETRIC EXCLUSION PROCESS
    Hartarsky, Ivailo
    Martinelli, Fabio
    Toninelli, Cristina
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2841 - 2859
  • [25] Exceedingly large deviations of the totally asymmetric exclusion process
    Olla, Stefano
    Tsai, Li-Cheng
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [26] Dynamical large deviations for the boundary driven symmetric exclusion process with Robin boundary con-ditions
    Franco, T.
    Goncalves, P.
    Landim, C.
    Neumann, A.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 : 1497 - 1546
  • [27] LARGE DEVIATIONS FOR THE CURRENT AND TAGGED PARTICLE IN 1D NEAREST-NEIGHBOR SYMMETRIC SIMPLE EXCLUSION
    Sethuraman, Sunder
    Varadhan, S. R. S.
    ANNALS OF PROBABILITY, 2013, 41 (3A): : 1461 - 1512
  • [28] Large deviation of the density profile in the steady state of the open symmetric simple exclusion process
    Derrida, B
    Lebowitz, JL
    Speer, ER
    JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) : 599 - 634
  • [29] Large Deviation of the Density Profile in the Steady State of the Open Symmetric Simple Exclusion Process
    B. Derrida
    J. L. Lebowitz
    E. R. Speer
    Journal of Statistical Physics, 2002, 107 : 599 - 634
  • [30] Entanglement distribution in the quantum symmetric simple exclusion process
    Bernard, Denis
    Piroli, Lorenzo
    PHYSICAL REVIEW E, 2021, 104 (01)