Self-supervised learning with automatic data augmentation for enhancing representation

被引:0
|
作者
Park, Chanjong [1 ]
Kim, Eunwoo [1 ,2 ]
机构
[1] Chung Ang Univ, Grad Sch Artificial Intelligence, Seoul, South Korea
[2] Chung Ang Univ, Sch Comp Sci & Engn, Seoul, South Korea
关键词
Self-supervised learning; Contrastive learning; Auto augmentation; Clustering;
D O I
10.1016/j.patrec.2024.06.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-supervised learning has become an increasingly popular method for learning effective representations from unlabeled data. One prominent approach in self-supervised learning is contrastive learning, which trains models to distinguish between similar and dissimilar sample pairs by pulling similar pairs closer and pushing dissimilar pairs farther apart. The key to the success of contrastive learning lies in the quality of the data augmentation, which increases the diversity of the data and helps the model learn more powerful and generalizable representations. While many studies have emphasized the importance of data augmentation, however, most of them rely on human-crafted augmentation strategies. In this paper, we propose a novel method, Self Augmentation on Contrastive Learning with Clustering (SACL), searching for the optimal data augmentation policy automatically using Bayesian optimization and clustering. The proposed approach overcomes the limitations of relying on domain knowledge and avoids the high costs associated with manually designing data augmentation rules. It automatically captures informative and useful features within the data by exploring augmentation policies. We demonstrate that the proposed method surpasses existing approaches that rely on manually designed augmentation rules. Our experiments show SACL outperforms manual strategies, achieving a performance improvement of 1.68% and 1.57% over MoCo v2 on the CIFAR10 and SVHN datasets, respectively.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 50 条
  • [31] SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning
    Ucar, Talip
    Hajiramezanali, Ehsan
    Edwards, Lindsay
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [32] Self-supervised contrastive graph representation with node and graph augmentation?
    Duan, Haoran
    Xie, Cheng
    Li, Bin
    Tang, Peng
    NEURAL NETWORKS, 2023, 167 : 223 - 232
  • [33] Self-Supervised Speech Representation Learning: A Review
    Mohamed, Abdelrahman
    Lee, Hung-yi
    Borgholt, Lasse
    Havtorn, Jakob D.
    Edin, Joakim
    Igel, Christian
    Kirchhoff, Katrin
    Li, Shang-Wen
    Livescu, Karen
    Maaloe, Lars
    Sainath, Tara N.
    Watanabe, Shinji
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (06) : 1179 - 1210
  • [34] Distilling Localization for Self-Supervised Representation Learning
    Zhao, Nanxuan
    Wu, Zhirong
    Lau, Rynson W. H.
    Lin, Stephen
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10990 - 10998
  • [35] Self-Supervised Relational Reasoning for Representation Learning
    Patacchiola, Massimiliano
    Storkey, Amos
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [36] Self-Supervised Learning for Specified Latent Representation
    Liu, Chicheng
    Song, Libin
    Zhang, Jiwen
    Chen, Ken
    Xu, Jing
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (01) : 47 - 59
  • [37] Self-supervised Representation Learning on Document Images
    Cosma, Adrian
    Ghidoveanu, Mihai
    Panaitescu-Liess, Michael
    Popescu, Marius
    DOCUMENT ANALYSIS SYSTEMS, 2020, 12116 : 103 - 117
  • [38] Adaptive Self-Supervised Graph Representation Learning
    Gong, Yunchi
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 254 - 259
  • [39] Context Autoencoder for Self-supervised Representation Learning
    Chen, Xiaokang
    Ding, Mingyu
    Wang, Xiaodi
    Xin, Ying
    Mo, Shentong
    Wang, Yunhao
    Han, Shumin
    Luo, Ping
    Zeng, Gang
    Wang, Jingdong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 132 (1) : 208 - 223
  • [40] SELF-SUPERVISED REPRESENTATION LEARNING FOR ULTRASOUND VIDEO
    Jiao, Jianbo
    Droste, Richard
    Drukker, Lior
    Papageorghiou, Aris T.
    Noble, J. Alison
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1847 - 1850