Assessing the Optoelectronic Performance of Halide Perovskite Quantum Dots with Identical Bandgaps: Composition Tuning Versus Quantum Confinement

被引:3
|
作者
Hu, Long [1 ,2 ]
Guan, Xinwei [3 ]
Huang, Hehe [4 ]
Ye, Tingting [5 ]
Ding, Junfeng [5 ]
Aarti, Aarti [6 ]
Venkatesan, Koushik [6 ]
Wang, Weizhen [7 ]
Chen, Fandi [1 ]
Lin, Chun-Ho [1 ]
Wan, Tao [1 ]
Li, Mengyao
Yi, Jiabao [3 ]
Zheng, Rongkun [8 ]
Chu, Dewei [1 ]
Cai, Songhua [7 ]
Chen, Jiayi [9 ]
Cazorla, Claudio [10 ]
Yuan, Jianyu [4 ]
Bai, Yang [11 ]
Wu, Tom [1 ,7 ]
Huang, Shujuan [2 ]
机构
[1] Univ New South Wales UNSW, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Macquarie Univ, Macquarie Univ Sustainable Energy Res Ctr, Sch Engn, Sydney, NSW 2109, Australia
[3] Univ Newcastle, Coll Engn Sci & Environm, Global Innovat Ctr Adv Nanomat, Sch Engn, Callaghan, NSW 2308, Australia
[4] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
[5] Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[6] Macquarie Univ, Sch Nat Sci, MQ Photon Res Ctr, Sydney, NSW 2109, Australia
[7] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong 999077, Peoples R China
[8] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[9] Curtin Univ, Sch Mol & Life Sci, Perth, WA 6102, Australia
[10] Univ Politecn Cataluna, Dept Fis, E-08034 Barcelona, Spain
[11] Chinese Acad Sci, Inst Technol Carbon Neutral, Shenzhen Inst Adv Technol, Fac Mat Sci & Energy Engn, Shenzhen 518055, Guangdong, Peoples R China
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 08期
基金
澳大利亚研究理事会;
关键词
OPTICAL-PROPERTIES; SOLAR-CELLS; ALPHA-CSPBI3; PEROVSKITE; PHASE SEGREGATION; PHOTOLUMINESCENCE; EFFICIENCY; TRANSPORT; CSPBX3; PHOTOVOLTAICS; PASSIVATION;
D O I
10.1021/acsenergylett.4c01180
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Halide perovskite quantum dots (QDs) have been considered promising materials for constructing low-cost, high-performing optoelectronics. Tuning their bandgaps can be accomplished through size-dependent quantum confinement or altering chemical compositions. To unravel the differences and similarities between these two approaches, two types of QDs, namely, CsPbI3 and CsPbI2.5Br0.5 QDs, were synthesized with different sizes but with the same bandgap of 1.85 eV. Aberration-corrected scanning transmission electron microscopy reveals extensive structural defects and nonperovskite phase in mixed-halide QDs, correlating with the nonuniform strain distribution. Pressure-dependent photoluminescence (PL) suggests lower structural stability and distinct lattice distortion in mixed-halide QDs. Furthermore, time-resolved PL and transient absorption measurements indicate longer carrier lifetimes in pure-halide QDs. Finally, the CsPbI3 QD solar cell delivered an enhanced power conversion efficiency of 16.1% compared with the mixed-halide counterpart (12.8%). This work provides valuable insights into tailoring quantum confinement and composition engineering strategies for achieving QDs with optimal optoelectronic performance.
引用
收藏
页码:3970 / 3981
页数:12
相关论文
共 50 条
  • [31] An Explanation for High Defect Tolerance in Metal Halide Perovskite Quantum Dots
    Cui, Yu
    Liu, Xiao-Yi
    Deng, Jia-Pei
    Li, Zhi-Qing
    Wang, Zi-Wu
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (04):
  • [32] Strong Collectivity of Optical Transitions in Lead Halide Perovskite Quantum Dots
    Mokkath, Junais Habeeb
    PLASMONICS, 2020, 15 (03) : 581 - 590
  • [33] Progress of Backlight Devices: Emergence of Halide Perovskite Quantum Dots/Nanomaterials
    Singh, Rajan Kumar
    Chen, Li-Hsuan
    Singh, Anupriya
    Jain, Neha
    Singh, Jai
    Lu, Chung-Hsin
    FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [34] Confined Excitons in Spherical-Like Halide Perovskite Quantum Dots
    Barfuber, Anja
    Rieger, Sebastian
    Dey, Amrita
    Tosun, Ahmet
    Akkerman, Quinten A.
    Debnath, Tushar
    Feldmann, Jochen
    NANO LETTERS, 2022, 22 (22) : 8810 - 8817
  • [35] Strong Collectivity of Optical Transitions in Lead Halide Perovskite Quantum Dots
    Junais Habeeb Mokkath
    Plasmonics, 2020, 15 : 581 - 590
  • [36] Halide perovskite quantum dots for photocatalytic CO2 reduction
    Song, Wentao
    Qi, Guobin
    Liu, Bin
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (24) : 12482 - 12498
  • [37] Lead halide perovskite quantum dots for light-emitting devices
    Chiba, Takayuki
    Kido, Junji
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (44) : 11868 - 11877
  • [38] Metal halide perovskite quantum dots for amphiprotic bio-imaging
    Lian, Huiwang
    Li, Yang
    Saravanakumar, S.
    Jiang, Huan
    Li, Zhanjun
    Wang, Jing
    Xu, Lingqing
    Zhao, Weiren
    Han, Gang
    COORDINATION CHEMISTRY REVIEWS, 2022, 452
  • [39] Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances
    Zhao, Yongli
    Li, Jinhang
    Dong, Yuhui
    Song, Jizhong
    ISRAEL JOURNAL OF CHEMISTRY, 2019, 59 (08) : 649 - 660
  • [40] Impact of Host Composition, Codoping, or Tridoping on Quantum-Cutting Emission of Ytterbium in Halide Perovskite Quantum Dots and Solar Cell Applications
    Zhou, Donglei
    Sun, Rui
    Xu, Wen
    Ding, Nan
    Li, Dongyu
    Chen, Xu
    Pan, Gencai
    Baio, Xue
    Song, Hongwei
    NANO LETTERS, 2019, 19 (10) : 6904 - 6913