Asynchronous Methods for Model-Based Reinforcement Learning

被引:0
|
作者
Zhang, Yunzhi [1 ]
Clavera, Ignasi [1 ]
Tsai, Boren [1 ]
Abbeel, Pieter [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
关键词
Reinforcement Learning; Model-Based; Asynchronous Learning;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Significant progress has been made in the area of model-based reinforcement learning. State-of-the-art algorithms are now able to match the asymptotic performance of model-free methods while being significantly more data efficient. However, this success has come at a price: state-of-the-art model-based methods require significant computation interleaved with data collection, resulting in run times that take days, even if the amount of agent interaction might be just hours or even minutes. When considering the goal of learning in real-time on real robots, this means these state-of-the-art model-based algorithms still remain impractical. In this work, we propose an asynchronous framework for model-based reinforcement learning methods that brings down the run time of these algorithms to be just the data collection time. We evaluate our asynchronous framework on a range of standard MuJoCo benchmarks. We also evaluate our asynchronous framework on three real-world robotic manipulation tasks. We show how asynchronous learning not only speeds up learning w.r.t wall-clock time through parallelization, but also further reduces the sample complexity of model-based approaches by means of improving the exploration and by means of effectively avoiding the policy overfitting to the deficiencies of learned dynamics models.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Olfactory-Based Navigation via Model-Based Reinforcement Learning and Fuzzy Inference Methods
    Wang, Lingxiao
    Pang, Shuo
    Li, Jinlong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (10) : 3014 - 3027
  • [32] Model gradient: unified model and policy learning in model-based reinforcement learning
    Jia, Chengxing
    Zhang, Fuxiang
    Xu, Tian
    Pang, Jing-Cheng
    Zhang, Zongzhang
    Yu, Yang
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (04)
  • [33] Model gradient: unified model and policy learning in model-based reinforcement learning
    Chengxing Jia
    Fuxiang Zhang
    Tian Xu
    Jing-Cheng Pang
    Zongzhang Zhang
    Yang Yu
    Frontiers of Computer Science, 2024, 18
  • [34] Understanding End-to-End Model-Based Reinforcement Learning Methods as Implicit Parameterization
    Gehring, Clement
    Kawaguchi, Kenji
    Huang, Jiaoyang
    Kaelbling, Leslie Pack
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [35] Coordination of distributed unmanned surface vehicles via model-based reinforcement learning methods
    Miao, Runlong
    Wang, Lingxiao
    Pang, Shuo
    APPLIED OCEAN RESEARCH, 2022, 122
  • [36] Incremental Learning of Planning Actions in Model-Based Reinforcement Learning
    Ng, Jun Hao Alvin
    Petrick, Ronald P. A.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3195 - 3201
  • [37] Learning to Reweight Imaginary Transitions for Model-Based Reinforcement Learning
    Huang, Wenzhen
    Yin, Qiyue
    Zhang, Junge
    Huang, Kaiqi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7848 - 7856
  • [38] Model-Based Transfer Reinforcement Learning Based on Graphical Model Representations
    Sun, Yuewen
    Zhang, Kun
    Sun, Changyin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (02) : 1035 - 1048
  • [39] Reinforcement Twinning: From digital twins to model-based reinforcement learning
    Schena, Lorenzo
    Marques, Pedro A.
    Poletti, Romain
    Van den Berghe, Jan
    Mendez, Miguel A.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
  • [40] Weighted model estimation for offline model-based reinforcement learning
    Hishinuma, Toru
    Senda, Kei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,