Serum and Urine Metabolic Fingerprints Characterize Renal Cell Carcinoma for Classification, Early Diagnosis, and Prognosis

被引:0
|
作者
Xu, Xiaoyu [1 ,2 ,3 ]
Fang, Yuzheng [1 ]
Wang, Qirui [4 ]
Zhai, Shuanfeng [1 ]
Liu, Wanshan [2 ,3 ]
Liu, Wanwan [4 ]
Wang, Ruimin [2 ,3 ]
Deng, Qiuqiong [4 ]
Zhang, Juxiang [2 ,3 ]
Gu, Jingli [4 ]
Huang, Yida [2 ,3 ]
Liang, Dingyitai [2 ,3 ]
Yang, Shouzhi [2 ,3 ]
Chen, Yonghui [1 ]
Zhang, Jin [1 ]
Xue, Wei [1 ]
Zheng, Junhua [1 ]
Wang, Yuning [2 ,3 ]
Qian, Kun [2 ,3 ]
Zhai, Wei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Renji Hosp, Dept Urol, Sch Med, 160 Pujian Rd, Shanghai 200127, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Med Robot, Sch Biomed Engn, State Key Lab Syst Med Canc, Shanghai 200030, Peoples R China
[3] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Div Cardiol, Shanghai 200127, Peoples R China
[4] Shanghai Jiao Tong Univ, Renji Hosp, Hlth Management Ctr, Sch Med, Shanghai 200127, Peoples R China
关键词
mass spectrometry; metabolic fingerprinting; prognosis; renal diagnosis; subtype classification; LIQUID BIOPSY;
D O I
10.1002/advs.202401919
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Renal cell carcinoma (RCC) is a substantial pathology of the urinary system with a growing prevalence rate. However, current clinical methods have limitations for managing RCC due to the heterogeneity manifestations of the disease. Metabolic analyses are regarded as a preferred noninvasive approach in clinics, which can substantially benefit the characterization of RCC. This study constructs a nanoparticle-enhanced laser desorption ionization mass spectrometry (NELDI MS) to analyze metabolic fingerprints of renal tumors (n = 456) and healthy controls (n = 200). The classification models yielded the areas under curves (AUC) of 0.938 (95% confidence interval (CI), 0.884-0.967) for distinguishing renal tumors from healthy controls, 0.850 for differentiating malignant from benign tumors (95% CI, 0.821-0.915), and 0.925-0.932 for classifying subtypes of RCC (95% CI, 0.821-0.915). For the early stage of RCC subtypes, the averaged diagnostic sensitivity of 90.5% and specificity of 91.3% in the test set is achieved. Metabolic biomarkers are identified as the potential indicator for subtype diagnosis (p < 0.05). To validate the prognostic performance, a predictive model for RCC participants and achieve the prediction of disease (p = 0.003) is constructed. The study provides a promising prospect for applying metabolic analytical tools for RCC characterization.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Serum Metabolic Fingerprints Characterize Systemic Lupus Erythematosus
    Li, Shunxiang
    Ding, Huihua
    Qi, Ziheng
    Yang, Jing
    Huang, Jingyi
    Huang, Lin
    Zhang, Mengji
    Tang, Yuanjia
    Shen, Nan
    Qian, Kun
    Guo, Qiang
    Wan, Jingjing
    [J]. ADVANCED SCIENCE, 2024, 11 (02)
  • [2] Diagnosis and prognosis of breast cancer by high-performance serum metabolic fingerprints
    Huang, Yida
    Du, Shaoqian
    Liu, Jun
    Huang, Weiyi
    Liu, Wanshan
    Zhang, Mengji
    Li, Ning
    Wang, Ruimin
    Wu, Jiao
    Chen, Wei
    Jiang, Mengyi
    Zhou, Tianhao
    Cao, Jing
    Yang, Jing
    Huang, Lin
    Gu, An
    Niu, Jingyang
    Cao, Yuan
    Zong, Wei-Xing
    Wang, Xin
    Qian, Kun
    Wang, Hongxia
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (12)
  • [3] Renal cell carcinoma diagnosis and prognosis within the context of the WHO classification 2016
    Zimpfer, A.
    Glass, A.
    Zettl, H.
    Maruschke, M.
    Hakenberg, O. W.
    Erbersdobler, A.
    [J]. UROLOGE, 2019, 58 (09): : 1057 - 1065
  • [4] Diagnosis and classification of renal cell carcinoma
    Bostwick, DG
    Eble, JN
    [J]. UROLOGIC CLINICS OF NORTH AMERICA, 1999, 26 (03) : 627 - +
  • [5] Renal Cell Carcinoma: Screening, Diagnosis, and Prognosis
    Wood, Laura S.
    [J]. CLINICAL JOURNAL OF ONCOLOGY NURSING, 2009, 13 (06) : 3 - 7
  • [6] Diagnosis of Esophageal Squamous Cell Carcinoma by High-Performance Serum Metabolic Fingerprints: A Retrospective Study
    Huang, Yida
    Yang, Haijun
    Li, Junkuo
    Wang, Fuqiang
    Liu, Wanshan
    Liu, Yiwen
    Wang, Ruimin
    Duan, Lijuan
    Wu, Jiao
    Gao, Zhaowei
    Cao, Jing
    Bian, Fang
    Zhang, Juxiang
    Zhao, Fang
    Yang, Shouzhi
    Cao, Shasha
    Yang, Aihua
    Wang, Xueliang
    Geng, Mingfei
    Hao, Anlin
    Li, Jian
    Cao, Jianwei
    Li, Chaowei
    Zhang, Zheyuan
    Zhang, Ning
    Huang, Yanlin
    Zhang, Yaowen
    Qian, Kun
    Zhou, Fuyou
    [J]. SMALL METHODS, 2024, 8 (01)
  • [7] Serum and Urine Biomarkers for Human Renal Cell Carcinoma
    Pastore, A. L.
    Palleschi, G.
    Silvestri, L.
    Moschese, D.
    Ricci, S.
    Petrozza, V.
    Carbone, A.
    Di Carlo, A.
    [J]. DISEASE MARKERS, 2015, 2015
  • [8] Chromophobe renal cell carcinoma-diagnosis and prognosis
    Erlmeier, F.
    [J]. PATHOLOGE, 2019, 40 (Suppl 3): : S252 - S258
  • [9] CLASSIFICATION, HISTOGENESIS AND PROGNOSIS OF RENAL-CELL CARCINOMA AND RENAL ONCOCYTOMA
    STORKEL, S
    JACOBI, GH
    [J]. PROCEEDINGS OF THE DEUTSCHE GESELLSCHAFT FUR PATHOLOGIE - 73RD CONFERENCE: CURRENT TOPICS IN RENAL PATHOLOGY, 1989, 73 : 321 - 338
  • [10] DIAGNOSIS, TREATMENT AND PROGNOSIS OF RENAL CELL-CARCINOMA
    TSUCHIDA, S
    SUGAWARA, H
    HARATA, T
    YAMAGUCHI, O
    ARAI, S
    [J]. TOHOKU JOURNAL OF EXPERIMENTAL MEDICINE, 1974, 113 (04): : 319 - 328