Detection of Dangerous Human Behavior by Using Optical Flow and Hybrid Deep Learning

被引:1
|
作者
Salim, Laith Mohammed [1 ]
Celik, Yuksel [2 ]
机构
[1] Karabuk Univ, Fac Engn, Comp Engn Dept, TR-78050 Karabuk, Turkiye
[2] SUNY, Univ Albany, Informat Secur & Digital Forens, New York, NY 12222 USA
关键词
human behavior recognition; human activity recognition; optical flow; deep learning; stacked autoencoder;
D O I
10.3390/electronics13112116
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dangerous human behavior in the driving sense may cause traffic accidents and even cause economic losses and casualties. Accurate identification of dangerous human behavior can prevent potential risks. To solve the problem of difficulty retaining the temporal characteristics of the existing data, this paper proposes a human behavior recognition model based on utilized optical flow and hybrid deep learning model-based 3D CNN-LSTM in stacked autoencoder and uses the abnormal behavior of humans in real traffic scenes to verify the proposed model. This model was tested using HMDB51 datasets and JAAD dataset and compared with the recent related works. For a quantitative test, the HMDB51 dataset was used to train and test models for human behavior. Experimental results show that the proposed model achieved good accuracy of about 86.86%, which outperforms recent works. For qualitative analysis, we depend on the initial annotations of walking movements in the JAAD dataset to streamline the annotating process to identify transitions, where we take into consideration flow direction, if it is cross-vehicle motion (to be dangerous) or if it is parallel to vehicle motion (to be of no danger). The results show that the model can effectively identify dangerous behaviors of humans and then test on the moving vehicle scene.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning
    Shengdong Du
    Tianrui Li
    Xun Gong
    Shi-Jinn Horng
    International Journal of Computational Intelligence Systems, 2020, 13 : 85 - 97
  • [32] Hybrid Histogram of Oriented Optical Flow for Abnormal Behavior Detection in Crowd Scenes
    Wang, Qiang
    Ma, Qiao
    Luo, Chao-Hui
    Liu, Hai-Yan
    Zhang, Can-Long
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2016, 30 (02)
  • [33] Two-Stage Hybrid Malware Detection Using Deep Learning
    Baek, Seungyeon
    Jeon, Jueun
    Jeong, Byeonghui
    Jeong, Young-Sik
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2021, 11
  • [34] Detection and classification of brain tumor using hybrid deep learning models
    Baiju Babu Vimala
    Saravanan Srinivasan
    Sandeep Kumar Mathivanan
    Prabhu Mahalakshmi
    Gemmachis Teshite Jayagopal
    Scientific Reports, 13
  • [35] Breast cancer detection using hybrid optimised deep learning method
    Ramalakshmi, Eliganti
    Gunisetti, Loshma
    Lingamgunta, Sumalatha
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2025, 48 (03)
  • [36] Detection and classification of adult epilepsy using hybrid deep learning approach
    Srinivasan, Saravanan
    Dayalane, Sundaranarayana
    Mathivanan, Sandeep kumar
    Rajadurai, Hariharan
    Jayagopal, Prabhu
    Dalu, Gemmachis Teshite
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] Detection of land subsidence using hybrid and ensemble deep learning models
    Kariminejad, Narges
    Mohammadifar, Aliakbar
    Sepehr, Adel
    Garajeh, Mohammad Kazemi
    Rezaei, Mahrooz
    Desir, Gloria
    Quesada-Roman, Adolfo
    Gholami, Hamid
    APPLIED GEOMATICS, 2024, 16 (03) : 593 - 610
  • [38] A Hybrid Framework for Intrusion Detection in Healthcare Systems Using Deep Learning
    Akshay Kumaar, M.
    Samiayya, Duraimurugan
    Vincent, P. M. Durai Raj
    Srinivasan, Kathiravan
    Chang, Chuan-Yu
    Ganesh, Harish
    FRONTIERS IN PUBLIC HEALTH, 2022, 9
  • [39] Internet of Things attack detection using hybrid Deep Learning Model
    Sahu, Amiya Kumar
    Sharma, Suraj
    Tanveer, M.
    Raja, Rohit
    COMPUTER COMMUNICATIONS, 2021, 176 : 146 - 154
  • [40] Detection and classification of adult epilepsy using hybrid deep learning approach
    Saravanan Srinivasan
    Sundaranarayana Dayalane
    Sandeep kumar Mathivanan
    Hariharan Rajadurai
    Prabhu Jayagopal
    Gemmachis Teshite Dalu
    Scientific Reports, 13