Exploring Safety Supervision for Continual Test-time Domain Adaptation

被引:0
|
作者
Yang, Xu [1 ]
Gu, Yanan [1 ]
Wei, Kun [1 ]
Deng, Cheng [1 ]
机构
[1] Xidian Univ, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual test-time domain adaptation aims to adapt a source pre-trained model to a continually changing target domain without using any source data. Unfortunately, existing pseudo-label learning methods suffer from the changing target domain environment, and the quality of generated pseudolabels is attenuated due to the domain shift, leading to instantaneous negative learning and long-term knowledge forgetting. To solve these problems, in this paper, we propose a simple yet effective framework for exploring safety supervision with three elaborate strategies: Label Safety, Sample Safety, and Parameter Safety. Firstly, to select reliable pseudo-labels, we define and adjust the confidence threshold in a self-adaptive manner according to the test-time learning status. Secondly, a soft-weighted contrastive learning module is presented to explore the highly-correlated samples and discriminate uncorrelated ones, improving the instantaneous efficiency of the model. Finally, we frame a Soft Weight Alignment strategy to normalize the distance between the parameters of the adapted model and the source pre-trained model, which alleviates the long-term problem of knowledge forgetting and significantly improves the accuracy of the adapted model in the late adaptation stage. Extensive experimental results demonstrate that our method achieves state-of-the-art performance on several benchmark datasets.
引用
收藏
页码:1649 / 1657
页数:9
相关论文
共 50 条
  • [41] In Search of Lost Online Test-Time Adaptation: A Survey
    Wang, Zixin
    Luo, Yadan
    Zheng, Liang
    Chen, Zhuoxiao
    Wang, Sen
    Huang, Zi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1106 - 1139
  • [42] Parameter-free Online Test-time Adaptation
    Boudiaf, Malik
    Mueller, Romain
    Ben Ayed, Ismail
    Bertinetto, Luca
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8334 - 8343
  • [43] Improved Self-Training for Test-Time Adaptation
    Ma, Jing
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 23701 - 23710
  • [44] Prototypical class-wise test-time adaptation
    Lee, Hojoon
    Lee, Seunghwan
    Jung, Inyoung
    Korea, Sungeun Hong
    PATTERN RECOGNITION LETTERS, 2025, 187 : 49 - 55
  • [45] Efficient Test-Time Model Adaptation without Forgetting
    Niu, Shuaicheng
    Wu, Jiaxiang
    Zhang, Yifan
    Chen, Yaofo
    Zheng, Shijian
    Zhao, Peilin
    Tan, Mingkui
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [46] Unraveling Batch Normalization for Realistic Test-Time Adaptation
    Su, Zixian
    Guo, Jingwei
    Yao, Kai
    Yang, Xi
    Wang, Qiufeng
    Huang, Kaizhu
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 15136 - 15144
  • [47] Dual-Path Adversarial Lifting for Domain Shift Correction in Online Test-Time Adaptation
    Tang, Yushun
    Chen, Shuoshuo
    Lu, Zhihe
    Wang, Xinchao
    He, Zhihai
    COMPUTER VISION - ECCV 2024, PT LXVII, 2025, 15125 : 342 - 359
  • [48] VPA: Fully Test-Time Visual Prompt Adaptation
    Sun, Jiachen
    Ibrahim, Mark
    Hall, Melissa
    Evtimov, Ivan
    Mao, Z. Morley
    Ferrer, Cristian Canton
    Hazirbas, Caner
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5796 - 5806
  • [49] DLTTA: Dynamic Learning Rate for Test-Time Adaptation on Cross-Domain Medical Images
    Yang, Hongzheng
    Chen, Cheng
    Jiang, Meirui
    Liu, Quande
    Cao, Jianfeng
    Heng, Pheng Ann
    Dou, Qi
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3575 - 3586
  • [50] Test-Time Adaptation with Shape Moments for Image Segmentation
    Bateson, Mathilde
    Lombaert, Herve
    Ben Ayed, Ismail
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT IV, 2022, 13434 : 736 - 745