An innovative hybrid W-EEMD-ARIMA model for drought forecasting using the standardized precipitation index

被引:2
|
作者
Rezaiy, Reza [1 ]
Shabri, Ani [1 ]
机构
[1] Univ Teknol Malaysia UTM, Fac Sci, Dept Math Sci, Johor Baharu 81310, Malaysia
关键词
ARIMA; Wavelet transform; EEMD; W-EEMD-ARIMA; Drought forecasting; Time series; ARTIFICIAL-INTELLIGENCE MODELS; TIME-SERIES; METEOROLOGICAL DROUGHT; CLIMATE-CHANGE; RIVER-BASIN; WAVELET; DECOMPOSITION; EVAPOTRANSPIRATION; ACCURACY; ORDER;
D O I
10.1007/s11069-024-06758-z
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Drought, a critical consequence of water scarcity and climate change, profoundly impacts human life. This study introduces a new W-EEMD-ARIMA hybrid model to forecast drought using Kabul's monthly precipitation data from 1970 to 2019. By integrating Ensemble Empirical Mode Decomposition (EEMD) and wavelet transform, we enhance the ARIMA/SARIMA model. Comparing the accuracy of our proposed method with ARIMA, Wavelet-ARIMA, and EEMD-ARIMA, using a training dataset (1970-2009) and validation data (2010-2019), we observed superior performance in our proposed W-EEMD-ARIMA across both datasets and all Standardized Precipitation Index (SPI) values. For SPI 12 validation, our model achieves an RMSE of 0.0736, MAE of 0.0575, MAPE of 18.9674, and R-squared of 0.9946, surpassing ARIMA (RMSE: 0.2561, MAE: 0.1874, MAPE: 60.0220, R-squared: 0.9361), Wavelet-ARIMA (RMSE: 0.1002, MAE: 0.0691, MAPE: 23.7122, R-squared: 0.9898), and EEMD-ARIMA (RMSE: 0.0858, MAE: 0.0660, MAPE: 24.5411, R-squared: 0.9925). Across SPI 3, 6, and 9, our hybrid model consistently outperforms others in both training and testing datasets, with lower RMSE, MAE, and MAPE, alongside higher R-squared values. These findings illustrate the superiority of our hybrid proposed model in enhancing drought prediction accuracy over the ARIMA, Wavelet-ARIMA, and EEMD-ARIMA approaches.
引用
收藏
页码:13513 / 13542
页数:30
相关论文
共 50 条
  • [21] Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index
    Kenza Achour
    Mohamed Meddi
    Ayoub Zeroual
    Senna Bouabdelli
    Pamela Maccioni
    Tommaso Moramarco
    Journal of Earth System Science, 2020, 129
  • [22] Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index
    Achour, Kenza
    Meddi, Mohamed
    Zeroual, Ayoub
    Bouabdelli, Senna
    Maccioni, Pamela
    Moramarco, Tommaso
    JOURNAL OF EARTH SYSTEM SCIENCE, 2020, 129 (01)
  • [23] Probabilistic forecasting of drought class transitions in Sicily (Italy) using Standardized Precipitation Index and North Atlantic Oscillation Index
    Bonaccorso, Brunella
    Cancelliere, Antonino
    Rossi, Giuseppe
    JOURNAL OF HYDROLOGY, 2015, 526 : 136 - 150
  • [24] Drought assessment and monitoring in Jordan using the standardized precipitation index
    Husam A. Abu Hajar
    Yasmin Z. Murad
    Khaldoun M. Shatanawi
    Bashar M. Al-Smadi
    Yousef A. Abu Hajar
    Arabian Journal of Geosciences, 2019, 12
  • [25] Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)
    Javad Bazrafshan
    Somayeh Hejabi
    Jaber Rahimi
    Water Resources Management, 2014, 28 : 1045 - 1060
  • [26] ANALYSIS OF DROUGHT IN THE MARMARA REGION USING THE STANDARDIZED PRECIPITATION INDEX
    Mengue, Guelay Pamuk
    Anac, Sueer
    Topcuoglu, Kivanc
    FRESENIUS ENVIRONMENTAL BULLETIN, 2009, 18 (05): : 633 - 641
  • [27] Drought analysis using Standardized Precipitation Index (SPI) in Kerala
    Vysakh, Arjun
    Kumar, B. Ajith
    JOURNAL OF AGROMETEOROLOGY, 2019, 21 : 154 - 159
  • [28] Drought analysis in New Zealand using the standardized precipitation index
    Caloiero, Tommaso
    ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (16)
  • [29] Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)
    Bazrafshan, Javad
    Hejabi, Somayeh
    Rahimi, Jaber
    WATER RESOURCES MANAGEMENT, 2014, 28 (04) : 1045 - 1060
  • [30] Drought analysis in New Zealand using the standardized precipitation index
    Tommaso Caloiero
    Environmental Earth Sciences, 2017, 76