An innovative hybrid W-EEMD-ARIMA model for drought forecasting using the standardized precipitation index

被引:0
|
作者
Rezaiy, Reza [1 ]
Shabri, Ani [1 ]
机构
[1] Univ Teknol Malaysia UTM, Fac Sci, Dept Math Sci, Johor Baharu 81310, Malaysia
关键词
ARIMA; Wavelet transform; EEMD; W-EEMD-ARIMA; Drought forecasting; Time series; ARTIFICIAL-INTELLIGENCE MODELS; TIME-SERIES; METEOROLOGICAL DROUGHT; CLIMATE-CHANGE; RIVER-BASIN; WAVELET; DECOMPOSITION; EVAPOTRANSPIRATION; ACCURACY; ORDER;
D O I
10.1007/s11069-024-06758-z
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Drought, a critical consequence of water scarcity and climate change, profoundly impacts human life. This study introduces a new W-EEMD-ARIMA hybrid model to forecast drought using Kabul's monthly precipitation data from 1970 to 2019. By integrating Ensemble Empirical Mode Decomposition (EEMD) and wavelet transform, we enhance the ARIMA/SARIMA model. Comparing the accuracy of our proposed method with ARIMA, Wavelet-ARIMA, and EEMD-ARIMA, using a training dataset (1970-2009) and validation data (2010-2019), we observed superior performance in our proposed W-EEMD-ARIMA across both datasets and all Standardized Precipitation Index (SPI) values. For SPI 12 validation, our model achieves an RMSE of 0.0736, MAE of 0.0575, MAPE of 18.9674, and R-squared of 0.9946, surpassing ARIMA (RMSE: 0.2561, MAE: 0.1874, MAPE: 60.0220, R-squared: 0.9361), Wavelet-ARIMA (RMSE: 0.1002, MAE: 0.0691, MAPE: 23.7122, R-squared: 0.9898), and EEMD-ARIMA (RMSE: 0.0858, MAE: 0.0660, MAPE: 24.5411, R-squared: 0.9925). Across SPI 3, 6, and 9, our hybrid model consistently outperforms others in both training and testing datasets, with lower RMSE, MAE, and MAPE, alongside higher R-squared values. These findings illustrate the superiority of our hybrid proposed model in enhancing drought prediction accuracy over the ARIMA, Wavelet-ARIMA, and EEMD-ARIMA approaches.
引用
收藏
页码:13513 / 13542
页数:30
相关论文
共 50 条
  • [1] Drought forecasting using W-ARIMA model with standardized precipitation index
    Rezaiy, Reza
    Shabri, Ani
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (09) : 3345 - 3367
  • [2] A Hybrid Wavelet-ARIMA Model for Standardized Precipitation Index Drought Forecasting
    Salisu, Alfa Mohammed
    Bin Shabri, Ani
    MATEMATIKA, 2020, 36 (02) : 141 - 156
  • [3] Using the ARIMA/SARIMA Model for Afghanistans Drought Forecasting Based on Standardized Precipitation Index
    Rezaiy, Reza
    Shabri, Ani
    MATEMATIKA, 2023, 39 (03) : 239 - 261
  • [4] Drought forecasting using the Standardized Precipitation Index
    A. Cancelliere
    G. Di Mauro
    B. Bonaccorso
    G. Rossi
    Water Resources Management, 2007, 21 : 801 - 819
  • [5] Drought forecasting using the standardized precipitation index
    Cancelliere, A.
    Di Mauro, G.
    Bonaccorso, B.
    Rossi, G.
    WATER RESOURCES MANAGEMENT, 2007, 21 (05) : 801 - 819
  • [6] Enhancing drought prediction precision with EEMD-ARIMA modeling based on standardized precipitation index
    Rezaiy, Reza
    Shabri, Ani
    WATER SCIENCE AND TECHNOLOGY, 2024, 89 (03) : 745 - 770
  • [7] Improving Drought Prediction Accuracy: A Hybrid EEMD and Support Vector Machine Approach with Standardized Precipitation Index
    Rezaiy, Reza
    Shabri, Ani
    WATER RESOURCES MANAGEMENT, 2024, : 5255 - 5277
  • [8] ANALYSIS OF POSSIBLE DROUGHT FORECASTING IN CROATIA USING STANDARDIZED PRECIPITATION INDEX (SPI)
    Cindric, Ksenija
    Kalin, Lovro
    HRVATSKE VODE, 2012, 20 (79-80) : 43 - 50
  • [9] Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index
    Jalalkamali, A.
    Moradi, M.
    Moradi, N.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2015, 12 (04) : 1201 - 1210
  • [10] Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index
    A. Jalalkamali
    M. Moradi
    N. Moradi
    International Journal of Environmental Science and Technology, 2015, 12 : 1201 - 1210