Singular Vortex Pairs Follow Magnetic Geodesics

被引:0
|
作者
Drivas, Theodore D. [1 ]
Glukhovskiy, Daniil [1 ]
Khesin, Boris [2 ]
机构
[1] SUNY Stony Brook, Dept Appl Math, Stony Brook, NY 11794 USA
[2] Univ Toronto, Dept Math, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MOTION;
D O I
10.1093/imrn/rnae106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider pairs of point vortices having circulations $\Gamma _{1}$ and $\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the "singular vortex pair" moves as a single-charged particle on the surface with a charge of order $1/\varepsilon <^>{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\Gamma _{1} +\Gamma _{2}$. In the case $\Gamma _{1}=-\Gamma _{2}$, this gives another proof of Kimura's conjecture [] that singular dipoles follow geodesics.
引用
收藏
页码:10880 / 10894
页数:15
相关论文
共 50 条
  • [21] The vortex structure of Dirac's equation for superconducting pairs in a magnetic field
    Dallacasa, V
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 404 (1-4): : 114 - 118
  • [22] Independent Control of the Chirality and Polarity for the Magnetic Vortex in Symmetric Nanodot Pairs
    Li, Junqin
    Wang, Yong
    Zhao, Zilong
    Cao, Jiefeng
    Zhu, Fangyuan
    Tai, Renzhong
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (09)
  • [23] Controlling magnetic vortex pairs in dipolar coupling Py elliptical nanocylinders
    Dantas, J. T. S.
    Souza, R. M.
    Carrico, A. S.
    Martins Jr, S. M. S. B.
    Oliveira, L. L.
    Dantas, Ana L.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (09)
  • [24] Spontaneous nucleation of vortex-antivortex pairs in confined magnetic microstructures
    Shen, Xiaochen
    Bo, Lan
    Zhao, Rongzhi
    Hu, Chenglong
    Ji, Lianze
    Zhang, Jian
    Zhang, Xuefeng
    Dong, Xinglong
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (10)
  • [26] Morse Theory for geodesics in singular conformal metrics
    Giambo, Roberto
    Giannoni, Fabio
    Piccione, Paolo
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (05) : 779 - 809
  • [27] Geodesics in the space of singular Kähler potentials
    S. Ali Aleyasin
    Xiu-Xiong Chen
    Mathematische Annalen, 2019, 375 : 1079 - 1103
  • [28] Singular dual pairs
    Ortega, JP
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 19 (01) : 61 - 95
  • [29] Singular index pairs
    Mischaikow K.
    Mrozek M.
    Reineck J.F.
    Journal of Dynamics and Differential Equations, 1999, 11 (3) : 399 - 425
  • [30] Vortex pairs on surfaces
    Koiller, Jair
    Boatto, Stefanella
    GEOMETRY AND PHYSICS, 2009, 1130 : 77 - +