Enhancing Legal Named Entity Recognition Using RoBERTa-GCN with CRF: A Nuanced Approach for Fine-Grained Entity Recognition

被引:0
|
作者
Jain, Arihant [1 ]
Sharma, Raksha [1 ]
机构
[1] Indian Inst Technol Roorkee, Roorkee, India
关键词
Legal Domain; Pretrained Language Models; Named Entity Recognition; Conditional Random Fields;
D O I
10.1007/978-3-031-56063-7_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate identification of named entities is pivotal for the advancement of sophisticated legal Artificial Intelligence (AI) applications. However, the legal domain presents distinct challenges due to the presence of fine-grained, domain-specific entities, including lawyers, judges, courts, and precedents. This necessitates a nuanced approach to Named Entity Recognition (NER). In this paper, we introduce a novel NER approach tailored to the legal domain. Our system combines Robustly Optimized BERT (RoBERTa) with a Graph Convolutional Network (GCN) to harness two distinct types of complementary information related to words in the data. Furthermore, the application of a Conditional Random Field (CRF) at the output layer ensures global consistency in data labeling by considering the entire sequence when predicting a named entity. RoBERTa captures contextual information about individual words, while GCN allows us to exploit the mutual relationships between words, resulting in more precise named entity identification. Our results indicate that RoBERTa-GCN (CRF) outperforms other standard settings, such as, RoBERTa, textGCN, and BiLSTM, including state-of-the-art for NER in the legal domain.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 50 条
  • [21] Enhancing Cyber Threat Intelligence with Named Entity Recognition using BERT-CRF
    Chen, Sheng-Shan
    Hwang, Ren-Hung
    Sun, Chin-Yu
    Lin, Ying-Dar
    Pai, Tun-Wen
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 7532 - 7537
  • [22] Named Entity Recognition by Using XLNet-BiLSTM-CRF
    Rongen Yan
    Xue Jiang
    Depeng Dang
    Neural Processing Letters, 2021, 53 : 3339 - 3356
  • [23] Named Entity Recognition in Portuguese Neurology Text Using CRF
    Lopes, Fabio
    Teixeira, Cesar
    Oliveira, Hugo Goncalo
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 336 - 348
  • [24] Named Entity Recognition by Using XLNet-BiLSTM-CRF
    Yan, Rongen
    Jiang, Xue
    Dang, Depeng
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3339 - 3356
  • [25] A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events
    Schiersch, Martin
    Mironova, Veselina
    Schmitt, Maximilian
    Thomas, Philippe
    Gabryszak, Aleksandra
    Hennig, Leonhard
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 4437 - 4444
  • [26] Portuguese Named Entity Recognition Using LSTM-CRF
    Quinta de Castro, Pedro Vitor
    Felipe da Silva, Nadia Felix
    Soares, Anderson da Silva
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2018, 2018, 11122 : 83 - 92
  • [27] Embeddings of Label Components for Sequence Labeling: A Case Study of Fine-grained Named Entity Recognition
    Kato, Takuma
    Abe, Kaori
    Ouchi, Hiroki
    Miyawaki, Shumpei
    Suzuki, Jun
    Inui, Kentaro
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020): STUDENT RESEARCH WORKSHOP, 2020, : 222 - 229
  • [28] CHEMNER: Fine-Grained Chemistry Named Entity Recognition with Ontology-Guided Distant Supervision
    Wang, Xuan
    Hu, Vivian
    Song, Xiangchen
    Garg, Shweta
    Xiao, Jinfeng
    Han, Jiawei
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 5227 - 5240
  • [29] Fine-grained multimodal named entity recognition with heterogeneous image-text similarity graphs
    Wang, Yongpeng
    Jiang, Chunmao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, : 2401 - 2415
  • [30] Multi-Grained Named Entity Recognition
    Xia, Congying
    Zhang, Chenwei
    Yang, Tao
    Li, Yaliang
    Du, Nan
    Wu, Xian
    Fan, Wei
    Ma, Fenglong
    Yu, Philip
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 1430 - 1440