Fabrication of Erbium-Doped Upconversion Nanoparticles and Carbon Quantum Dots for Efficient Perovskite Solar Cells

被引:2
|
作者
Alotaibi, Alhanouf [1 ]
Alsardi, Farah [1 ]
Alshwikhat, Fatimah [1 ]
Aldossary, Madawey [1 ]
Almarwani, Fudhyah S. [1 ]
Talidi, Faizah J. [1 ]
Almenhali, Shouq A. [1 ]
Almotawa, Sarah F. [1 ]
Alzahrani, Yahya A. [2 ]
Alenzi, Sultan [2 ]
Alanazi, Anwar [2 ]
Alkahtani, Masfer [2 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Phys, POB 1982, Dammam 31441, Saudi Arabia
[2] King Abdulaziz City Sci & Technol KACST, Future Energy Technol Inst, Riyadh 11442, Saudi Arabia
来源
MOLECULES | 2024年 / 29卷 / 11期
关键词
solar energy; perovskite solar cell; upconversion nanoparticles; lithium; CQDs; photovoltaic performance; BETA-NAYF4YB3+; PERFORMANCE; CORE; DYNAMICS; ENERGY;
D O I
10.3390/molecules29112556
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Upconversion nanoparticles (UCNPs) and carbon quantum dots (CQDs) have emerged as promising candidates for enhancing both the stability and efficiency of perovskite solar cells (PSCs). Their rising prominence is attributed to their dual capabilities: they effectively passivate the surfaces of perovskite-sensitive materials while simultaneously serving as efficient spectrum converters for sunlight. In this work, we synthesized UCNPs doped with erbium ions as down/upconverting ions for ultraviolet (UV) and near-infrared (NIR) light harvesting. Various percentages of the synthesized UCNPs were integrated into the mesoporous layers of PSCs. The best photovoltaic performance was achieved by a PSC device with 30% UCNPs doped in the mesoporous layer, with PCE = 16.22% and a fill factor (FF) of 74%. In addition, the champion PSCs doped with 30% UCNPs were then passivated with carbon quantum dots at different spin coating speeds to improve their photovoltaic performance. When compared to the pristine PSCs, a fabricated PSC device with 30% UCNPs passivated with CQDs at a spin coating speed of 3000 rpm showed improved power conversion efficiency (PCE), from 16.65% to 18.15%; a higher photocurrent, from 20.44 mA/cm2 to 22.25 mA/cm2; and a superior fill factor (FF) of 76%. Furthermore, the PSCs integrated with UCNPs and CQDs showed better stability than the pristine devices. These findings clear the way for the development of effective PSCs for use in renewable energy applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] High-Performance and Stable Perovskite Solar Cells Using Carbon Quantum Dots and Upconversion Nanoparticles
    Alkahtani, Masfer
    Alenzi, Sultan M.
    Alsolami, Abdulellah
    Alsofyani, Najla
    Alfahd, Anfal
    Alzahrani, Yahya A.
    Aljuwayr, Abdulaziz
    Abduljawad, Marwan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [2] Erbium-doped silicon quantum dots and wires.
    Coffer, JL
    Senter, RA
    Wang, ZY
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U347 - U348
  • [3] Improved performance with boron-doped carbon quantum dots in perovskite solar cells
    Kurukavak, Cisem Kirbiyik
    Yilmaz, Tugbahan
    Toprak, Ayseguel
    Bueyuekbekar, Alihan
    Kus, Mahmut
    Ersoez, Mustafa
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 927
  • [4] Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer
    Zhu, Xiaomeng
    Sun, Jing
    Yuan, Shuai
    Li, Ning
    Qiu, Zhiwen
    Jia, Jinbiao
    Liu, Yining
    Dong, Jia
    Lv, Pin
    Cao, Bingqiang
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (18) : 7130 - 7135
  • [5] Rejuvenating Aged Perovskite Quantum Dots for Efficient Solar Cells
    Chen, Jingxuan
    Jia, Donglin
    Zhuang, Rongshan
    Hua, Yong
    Zhang, Xiaoliang
    ADVANCED MATERIALS, 2024, 36 (01)
  • [6] ENHANCED PHOTON UPCONVERSION USING ERBIUM-DOPED NANOPARTICLES INTERACTING WITH SILICON METASURFACES
    Ahiboz, Doguscan
    Andresen, Elina
    Manley, Phillip
    Genger, Ute Resch
    Wuerth, Christian
    Becker, Christiane
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 2008 - 2010
  • [7] Perovskite Quantum Dots in Solar Cells
    Liu, Lu
    Najar, Adel
    Wang, Kai
    Du, Minyong
    Liu, Shengzhong
    ADVANCED SCIENCE, 2022, 9 (07)
  • [8] Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells
    Chen, Jingxuan
    Jia, Donglin
    Qiu, Junming
    Zhuang, Rongshan
    Hua, Yong
    Zhang, Xiaoliang
    NANO ENERGY, 2022, 96
  • [9] Ligand engineering of perovskite quantum dots for efficient and stable solar cells
    Ding, Shanshan
    Hao, Mengmeng
    Lin, Tongen
    Bai, Yang
    Wang, Lianzhou
    JOURNAL OF ENERGY CHEMISTRY, 2022, 69 : 626 - 648
  • [10] Surface matrix regulation of perovskite quantum dots for efficient solar cells
    Xiao, Shuhuai
    Mei, Xinyi
    Zhang, Xiaoliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (16) : 5756 - 5794