A Privacy Preserving Federated Learning (PPFL) Based Cognitive Digital Twin (CDT) Framework for Smart Cities

被引:0
|
作者
Mandal, Sukanya [1 ]
机构
[1] Dublin City Univ, Dublin 9, Ireland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Smart City is one that makes better use of city data to make our communities better places to live. Typically, this has 3 components: sensing (data collection), analysis and actuation. Privacy, particularly as it relates to citizen's data, is a cross-cutting theme. A Digital Twin (DT) is a virtual replica of a real-world physical entity. Cognitive Digital Twins (CDT) are DTs enhanced with cognitive AI capabilities. Both DTs and CDTs have seen adoption in the manufacturing and industrial sectors however cities are slow to adopt these because of privacy concerns. This work attempts to address these concerns by proposing a Privacy Preserving Federated Learning (PPFL) based Cognitive Digital Twin framework for Smart Cities.
引用
收藏
页码:23399 / 23400
页数:2
相关论文
共 50 条
  • [21] Privacy-Preserving Federated Learning Framework Based on Chained Secure Multiparty Computing
    Li, Yong
    Zhou, Yipeng
    Jolfaei, Alireza
    Yu, Dongjin
    Xu, Gaochao
    Zheng, Xi
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (08) : 6178 - 6186
  • [22] A Fog-Based Privacy-Preserving Federated Learning System for Smart Healthcare Applications
    Butt, Maryum
    Tariq, Noshina
    Ashraf, Muhammad
    Alsagri, Hatoon S.
    Moqurrab, Syed Atif
    Alhakbani, Haya Abdullah A.
    Alduraywish, Yousef A.
    [J]. ELECTRONICS, 2023, 12 (19)
  • [23] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [24] Privacy-preserving federated learning framework in multimedia courses recommendation
    YangJie Qin
    Ming Li
    Jia Zhu
    [J]. Wireless Networks, 2023, 29 : 1535 - 1544
  • [25] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [26] Robust privacy-preserving federated learning framework for IoT devices
    Han, Zhaoyang
    Zhou, Lu
    Ge, Chunpeng
    Li, Juan
    Liu, Zhe
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 9655 - 9673
  • [27] Privacy-preserving federated learning framework in multimedia courses recommendation
    Qin, YangJie
    Li, Ming
    Zhu, Jia
    [J]. WIRELESS NETWORKS, 2023, 29 (04) : 1535 - 1544
  • [28] Privacy-Preserving Asynchronous Federated Learning Framework in Distributed IoT
    Yan, Xinru
    Miao, Yinbin
    Li, Xinghua
    Choo, Kim-Kwang Raymond
    Meng, Xiangdong
    Deng, Robert H. H.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13281 - 13291
  • [29] A Game-theoretic Framework for Privacy-preserving Federated Learning
    Zhang, Xiaojin
    Fan, Lixin
    Wang, Siwei
    Li, Wenjie
    Chen, Kai
    Yang, Qiang
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [30] A Hierarchical Asynchronous Federated Learning Privacy-Preserving Framework for IoVs
    Zhou, Rui
    Niu, Xianhua
    Xiong, Ling
    Wang, Yangpeng
    Zhao, Yue
    Yu, Kai
    [J]. FRONTIERS IN CYBER SECURITY, FCS 2023, 2024, 1992 : 99 - 113