Adjusted Wasserstein Distributionally Robust Estimator in Statistical Learning

被引:0
|
作者
Xie, Yiling [1 ]
Huo, Xiaoming [1 ]
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
distributionally robust optimization; asymptotic normality; Wasserstein distance; unbiased estimator; generalized linear model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an adjusted Wasserstein distributionally robust estimator-based on a nonlinear transformation of the Wasserstein distributionally robust (WDRO) estimator in statistical learning. The classic WDRO estimator is asymptotically biased, while our adjusted WDRO estimator is asymptotically unbiased, resulting in a smaller asymptotic mean squared error. Further, under certain conditions, our proposed adjustment technique provides a general principle to de-bias asymptotically biased estimators. Specifically, we will investigate how the adjusted WDRO estimator is developed in the generalized linear model, including logistic regression, linear regression, and Poisson regression. Numerical experiments demonstrate the favorable practical performance of the adjusted estimator over the classic one.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 50 条
  • [31] Wasserstein Distributionally Robust Look-Ahead Economic Dispatch
    Poolla, Bala Kameshwar
    Hota, Ashish R.
    Bolognani, Saverio
    Callaway, Duncan S.
    Cherukuri, Ashish
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2010 - 2022
  • [32] Wasserstein distributionally robust surgery scheduling with elective and emergency patients
    Wang, Yu
    Zhang, Yu
    Tang, Jiafu
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 314 (02) : 509 - 522
  • [33] Distributionally robust disaster relief planning under the Wasserstein set
    El Tonbari, Mohamed
    Nemhauser, George
    Toriello, Alejandro
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2024, 168
  • [34] Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization
    Ning, Chao
    Ma, Xutao
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3597 - 3602
  • [35] Distributionally Robust Quickest Change Detection using Wasserstein Uncertainty Sets
    Xie, Liyan
    Liang, Yuchen
    Veeravalli, Venugopal V.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [36] Distributionally Robust Imitation Learning
    Bashiri, Mohammad Ali
    Ziebart, Brian D.
    Zhang, Xinhua
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Wasserstein Metric Based Distributionally Robust Approximate Framework for Unit Commitment
    Zhu, Rujie
    Wei, Hua
    Bai, Xiaoqing
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (04) : 2991 - 3001
  • [38] Distributionally robust joint chance-constrained programming with Wasserstein metric
    Gu, Yining
    Wang, Yanjun
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2023,
  • [39] DISTRIBUTIONALLY ROBUST REWARD-RISK RATIO PROGRAMMING WITH WASSERSTEIN METRIC
    Zhao, Yong
    Liu, Yongchao
    Yang, Xinming
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2019, 15 (01): : 69 - 90
  • [40] On Distributionally Robust Generalized Nash Games Defined over the Wasserstein Ball
    Fabiani, Filippo
    Franci, Barbara
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 199 (01) : 298 - 309