Adjusted Wasserstein Distributionally Robust Estimator in Statistical Learning

被引:0
|
作者
Xie, Yiling [1 ]
Huo, Xiaoming [1 ]
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
distributionally robust optimization; asymptotic normality; Wasserstein distance; unbiased estimator; generalized linear model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an adjusted Wasserstein distributionally robust estimator-based on a nonlinear transformation of the Wasserstein distributionally robust (WDRO) estimator in statistical learning. The classic WDRO estimator is asymptotically biased, while our adjusted WDRO estimator is asymptotically unbiased, resulting in a smaller asymptotic mean squared error. Further, under certain conditions, our proposed adjustment technique provides a general principle to de-bias asymptotically biased estimators. Specifically, we will investigate how the adjusted WDRO estimator is developed in the generalized linear model, including logistic regression, linear regression, and Poisson regression. Numerical experiments demonstrate the favorable practical performance of the adjusted estimator over the classic one.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 50 条
  • [1] Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator
    Nguyen, Viet Anh
    Kuhn, Daniel
    Esfahani, Peyman Mohajerin
    [J]. OPERATIONS RESEARCH, 2022, 70 (01) : 490 - 515
  • [2] Distributionally robust learning-to-rank under the Wasserstein metric
    Sotudian, Shahabeddin
    Chen, Ruidi
    Paschalidis, Ioannis Ch.
    [J]. PLOS ONE, 2023, 18 (03):
  • [3] Wasserstein Distributionally Robust Option Pricing
    Wei LIU
    Li YANG
    Bo YU
    [J]. Journal of Mathematical Research with Applications, 2021, 41 (01) : 99 - 110
  • [4] Distributionally Robust Games: Wasserstein Metric
    Gao, Jian
    Tembine, Hamidou
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [5] Wasserstein Distributionally Robust Kalman Filtering
    Shafieezadeh-Abadeh, Soroosh
    Viet Anh Nguyen
    Kuhn, Daniel
    Esfahani, Peyman Mohajerin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] Regularization for Wasserstein distributionally robust optimization
    Azizian, Waiss
    Iutzeler, Franck
    Malick, Jerome
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [7] Wasserstein Distance and the Distributionally Robust TSP
    Carlsson, John Gunnar
    Behroozi, Mehdi
    Mihic, Kresimir
    [J]. OPERATIONS RESEARCH, 2018, 66 (06) : 1603 - 1624
  • [8] Wasserstein Distributionally Robust Regret Minimization
    Cho, Youngchae
    Yang, Insoon
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 820 - 825
  • [9] Principled Learning Method for Wasserstein Distributionally Robust Optimization with Local Perturbations
    Kwon, Yongchan
    Kim, Wonyoung
    Won, Joong-Ho
    Paik, Myunghee Cho
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [10] Confidence regions in Wasserstein distributionally robust estimation
    Blanchet, Jose
    Murthy, Karthyek
    Si, Nian
    [J]. BIOMETRIKA, 2022, 109 (02) : 295 - 315