High-temperature energy storage performance of polyetherimide all-organic composites enhanced by hindering charge hopping and molecular motion

被引:0
|
作者
Lin, Songjia [1 ]
Min, Daomin [1 ]
Wang, Shihang [1 ]
Hao, Yutao [1 ]
Song, Xiaofan [1 ]
Ji, Minzun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
charge trapping; electrical breakdown; energy storage; molecular displacement; PEI all-organic composites; DIELECTRIC MATERIALS;
D O I
10.1002/pol.20240505
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Dielectric capacitors are widely used in aerospace, power systems, and other fields. Working environments with ever-increasing temperatures pose a new challenge to energy storage performance. Polyetherimide (PEI) has gained extensive research for its good high-temperature properties. In order to further improve its energy storage performance at high temperatures, many researchers have worked on PEI all-organic composites doping with molecular semiconductors. Previous studies generally only considered the effect of introduced deep traps on macroscopic properties such as electrical conductivity, electrical breakdown, and energy storage performance. It has been shown that only qualitative analyses can be performed from the perspective of charge trapping, and it is difficult to obtain quantitative results. Therefore, this work proposes to study the macroscopic properties of polymer dielectrics by combining charge trapping with molecular displacement. A comprehensive conduction-breakdown-energy storage model was established to explain the influence mechanism of molecular semiconductors on the improved energy storage performance of PEI composites at high temperatures. The molecular semiconductor fillers increase the coefficient of friction between molecular chains, which restricts the movement of molecular chains and also limits charge hopping. Therefore, the dielectrics have higher breakdown strengths and smaller conduction losses, which synergistically enhance the energy storage performance. image
引用
收藏
页码:5041 / 5051
页数:11
相关论文
共 50 条
  • [41] All-Organic Sandwich-Structured Dielectric Films Based on Aramid Nanofibers and Polyimide for High-Temperature Electrical Energy Storage
    Duan, Guangyu
    Hu, Fengying
    Wang, Yabing
    Shao, Wenxuan
    Xu, Ruopu
    Lu, Duo
    Hu, Zuming
    ACS APPLIED NANO MATERIALS, 2024, 8 (01) : 543 - 551
  • [42] Enhanced high-temperature capacitive energy storage in polyetherimide dielectrics through dense crosslinked network structures
    Wei, Yuhao
    Yang, Luhai
    Wang, Cong
    Zhu, Zhenyu
    Dai, Yuancong
    Qin, Hongmei
    Xiong, Chuanxi
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [43] Rational design of all-organic flexible high-temperature polymer dielectrics
    Wu, Chao
    Deshmukh, Ajinkya A.
    Chen, Lihua
    Ramprasad, Rampi
    Sotzing, Gregory A.
    Cao, Yang
    MATTER, 2022, 5 (09) : 2615 - 2623
  • [44] Aromatic-Free Polymers Based All-Organic Dielectrics with Breakdown Self-Healing for High-Temperature Capacitive Energy Storage
    Chen, Jie
    Pei, Zhantao
    Liu, Yijie
    Shi, Kunming
    Zhu, Yingke
    Zhang, Zhicheng
    Jiang, Pingkai
    Huang, Xingyi
    ADVANCED MATERIALS, 2023, 35 (48)
  • [45] Superior high-temperature energy storage performance of Polyetherimide-Based dielectric composites via optimization of the spatial distribution of MgO nanoparticles
    Zhang, Na
    Zhang, Chuying
    Guo, Haotong
    Bai, Jinbo
    Zhao, Hang
    CHEMICAL ENGINEERING JOURNAL, 2025, 508
  • [46] Achieving high insulating strength and energy storage properties of all-organic dielectric composites by surface morphology modification
    Feng, Qi-Kun
    Pei, Jia-Yao
    Zhang, Yong-Xin
    Zhang, Dong-Li
    Liu, Di-Fan
    Ping, Jiang-Bo
    Dang, Zhi-Min
    Composites Science and Technology, 2022, 226
  • [47] Achieving high insulating strength and energy storage properties of all-organic dielectric composites by surface morphology modification
    Feng, Qi-Kun
    Pei, Jia-Yao
    Zhang, Yong-Xin
    Zhang, Dong-Li
    Liu, Di-Fan
    Ping, Jiang-Bo
    Dang, Zhi-Min
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 226
  • [48] Enhanced energy density and efficiency of all-organic composites by designing a multilayer gradient structure
    Liu, Yuan
    Luo, Hang
    Wang, Fan
    Xiao, Zhida
    Yang, Chenchen
    Li, Xiaona
    Peng, Bo
    Wan, Yuting
    Yin, Jian
    Zhang, Dou
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (32) : 10985 - 10992
  • [49] Metal-organic cage crosslinked nanocomposites with enhanced high-temperature capacitive energy storage performance
    Zhao, Shuo
    Peng, Weifeng
    Zhou, Le
    Dai, Shuqi
    Ren, Weibin
    Xu, Erxiang
    Xiao, Yao
    Zhang, Mufeng
    Huang, Mingjun
    Shen, Yang
    Nan, Ce-Wen
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [50] Enhanced breakdown strength and energy storage density in polyurea all-organic composite films
    Zhou, Yujiu
    Liu, Qingxia
    Chen, Fujia
    Zhao, Yuetao
    Yang, Wenyao
    He, Xin
    Mao, Xiling
    Yang, Yajie
    Xu, Jianhua
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)