Generation of entangled waveguided photon pairs by free electrons

被引:3
|
作者
Rasmussen, Theis P. [1 ]
Echarri, alvaro Rodriguez [3 ]
Cox, Joel D. [1 ,4 ]
de Abajo, F. Javier Garcia [2 ,5 ]
机构
[1] Univ Southern Denmark, POLIMA Ctr Polariton Driven Light Matter Interact, Campusvej 55, DK-5230 Odense M, Denmark
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[3] Max Born Inst, D-12489 Berlin, Germany
[4] Univ Southern Denmark, Danish Inst Adv Study, Campusvej 55, DK-5230 Odense M, Denmark
[5] ICREA Inst Catalana Recerca & Estudis Avancats, Passeig Lluis Co 23, Barcelona 08010, Spain
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 12期
基金
新加坡国家研究基金会;
关键词
ANGULAR-MOMENTUM; LOSS POLARITONS; ENERGY LOSSES; GRAPHENE; LIGHT;
D O I
10.1126/sciadv.adn6312
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entangled photons are a key resource in quantum technologies. While intense laser light propagating in nonlinear crystals is conventionally used to generate entangled photons, such schemes have low efficiency due to the weak nonlinear response of known materials and losses associated with in/out photon coupling. Here, we show how to generate entangled polariton pairs directly within optical waveguides using free electrons. The measured energy loss of undeflected electrons heralds the production of counter-propagating polariton pairs entangled in energy and emission direction. For illustration, we study the excitation of plasmon polaritons in metal strip waveguides that strongly enhance light-matter interactions, rendering two-plasmon generation dominant over single-plasmon excitation. We demonstrate that electron energy losses detected within optimal frequency ranges can reliably signal the generation of plasmon pairs entangled in energy and momentum. Our proposed scheme is directly applicable to other types of optical waveguides for in situ generation of entangled photon pairs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Generation of polarization-entangled photon pairs in a cold atomic ensemble
    Yuelong Wu
    Shujing Li
    Wei Ge
    Zhongxiao Xu
    Long Tian
    Hai Wang
    [J]. Science Bulletin, 2016, 61 (04) : 302 - 306
  • [22] Cavity-enhanced generation of polarization-entangled photon pairs
    Oberparleiter, M
    Weinfurter, H
    [J]. OPTICS COMMUNICATIONS, 2000, 183 (1-4) : 133 - 137
  • [23] Generation of polarization-entangled photon pairs in a cold atomic ensemble
    Wu, Yuelong
    Li, Shujing
    Ge, Wei
    Xu, Zhongxiao
    Tian, Long
    Wang, Hai
    [J]. SCIENCE BULLETIN, 2016, 61 (04) : 302 - 306
  • [24] Generation of photon-number-entangled soliton pairs through interactions
    Lee, RK
    Lai, Y
    Malomed, BA
    [J]. PHYSICAL REVIEW A, 2005, 71 (01)
  • [25] Enhanced generation of entangled-photon pairs from a cavity system
    Ajiki, Hiroshi
    Ishihara, Hajime
    [J]. PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 7, 2006, 3 (07): : 2440 - +
  • [26] Methods of Generating Entangled Photon Pairs
    Li, Yixuan
    [J]. 2020 3RD INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY (CISAT) 2020, 2020, 1634
  • [27] Ultrabright source of entangled photon pairs
    Adrien Dousse
    Jan Suffczyński
    Alexios Beveratos
    Olivier Krebs
    Aristide Lemaître
    Isabelle Sagnes
    Jacqueline Bloch
    Paul Voisin
    Pascale Senellart
    [J]. Nature, 2010, 466 : 217 - 220
  • [28] Coherent backscattering of entangled photon pairs
    Safadi, Mamoon
    Lib, Ohad
    Lin, Ho-Chun
    Hsu, Chia Wei
    Goetschy, Arthur
    Bromberg, Yaron
    [J]. NATURE PHYSICS, 2023, 19 (04) : 562 - +
  • [29] Information communicated by entangled photon pairs
    Brougham, Thomas
    Barnett, Stephen M.
    [J]. PHYSICAL REVIEW A, 2012, 85 (03)
  • [30] Coherent backscattering of entangled photon pairs
    Mamoon Safadi
    Ohad Lib
    Ho-Chun Lin
    Chia Wei Hsu
    Arthur Goetschy
    Yaron Bromberg
    [J]. Nature Physics, 2023, 19 : 562 - 568