Core-Shell Nanogels With Raspberry Architecture and Amine Loading in the Core via Precipitation Polymerization: A Mechanistic Study

被引:1
|
作者
Espuche, Bruno [1 ,2 ]
Kumar, Krishan [2 ]
Moretti, Paolo [3 ]
Ortore, Maria Grazia [3 ]
Ivashchenko, Olena [4 ]
Coy, Emerson [4 ]
Amenitsch, Heinz [5 ]
Moya, Sergio E. [1 ]
Calderon, Marcelo [2 ,6 ]
机构
[1] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Biomat CIC biomaGUNE, Donostia San Sebastian 20014, Spain
[2] Univ Basque Country UPV EHU, Fac Chem, Appl Chem Dept, POLYMAT, Donostia San Sebastian 20018, Spain
[3] Marche Polytech Univ, Dept Life & Environm Sci, I-60131 Ancona, Italy
[4] Adam Mickiewicz Univ, Nanobiomed Ctr, PL-61614 Poznan, Poland
[5] Graz Univ Technol, Inst Inorgan Chem, A-8010 Graz, Austria
[6] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
关键词
X-RAY-SCATTERING; PEGYLATED NANOGELS; DELIVERY; HYDROGEL; POLYMERS; CARRIERS; SIZE;
D O I
10.1021/acs.macromol.4c00350
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nanogels (NGs) are synthesized by precipitation polymerization of dendritic polyglycerol (dPG), N-isopropylacrylamide (NIPAM), and N-isopropyl methacrylamide (NIPMAM). The stabilization and agglomeration of subunits during the NG growth result in raspberry-like structures, as shown by transmission electron microscopy, atomic force microscopy, and small-angle X-ray scattering measurements. Positive charges are introduced into dPG-NIPAM-NIPMAM NGs by (1) the copolymerization of dimethylaminoethyl methacrylate (DMAEMA) and (2) the copolymerization of glycidyl methacrylate (GMA), followed by its functionalization with ethylenediamine (ED) through the epoxy group. Homogeneous structures are obtained by the copolymerization in batch of DMAEMA with the other monomers, whereas core-shell NGs are reached by semibatch copolymerization of GMA. After amination, the charges are restricted to the core of the NGs.
引用
收藏
页码:6035 / 6048
页数:14
相关论文
共 50 条
  • [41] Chitosan-based nanocapsules of core-shell architecture
    Szafraniec J.
    Odrobińska J.
    Lachowicz D.
    Kania G.
    Zapotoczny S.
    Polim, 7-8 (713-719): : 713 - 719
  • [42] Rheological behaviour of core-shell emulsion/amine crosslinking process
    Lu, Jia
    Easteal, Allan J.
    Bolt, Clive J.
    NEW MATERIALS AND ADVANCED MATERIALS, PTS 1 AND 2, 2011, 152-153 : 1471 - +
  • [43] SAXS STUDY OF CORE-SHELL COLLOIDS
    BEYER, D
    LEBEK, W
    HERGETH, WD
    SCHMUTZLER, K
    COLLOID AND POLYMER SCIENCE, 1990, 268 (08) : 744 - 748
  • [44] Electrochemical study of core-shell microgels
    Seo, Seong S.
    POLYMER BULLETIN, 2008, 61 (03) : 373 - 381
  • [45] Synthesis of core-shell PS/PMMA expandable particles via seeded suspension polymerization
    Heydarpoor, S.
    Abbasi, F.
    Jalili, K.
    Najafpour, M.
    JOURNAL OF POLYMER RESEARCH, 2015, 22 (08)
  • [46] Studies on preparation and properties of PAA/gelatin core-shell nanoparticles via template polymerization
    Wang, Yansong
    Zhang, Youwei
    Wu, Chengxun
    Zhao, Jiongxin
    POLYMER, 2007, 48 (20) : 5950 - 5959
  • [47] Core-shell attapulgite@polyaniline composite particles via in situ oxidative polymerization
    Liu, Yushan
    Liu, Peng
    Su, Zhixing
    SYNTHETIC METALS, 2007, 157 (13-15) : 585 - 591
  • [48] Electrochemical Study of Core-Shell Microgels
    Seong S. Seo
    Polymer Bulletin, 2008, 61 : 373 - 381
  • [49] Synthesis of Fe3O4@poly(methacrylic acid) core-shell submicrospheres via RAFT precipitation polymerization
    Li, Yiya
    Dong, Mingjie
    Kong, Juan
    Chai, Zhihua
    Fu, Guoqi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 394 : 199 - 207
  • [50] Synthesis of core-shell PS/PMMA expandable particles via seeded suspension polymerization
    S. Heydarpoor
    F. Abbasi
    K. Jalili
    M. Najafpour
    Journal of Polymer Research, 2015, 22