An Enclave-Aided Byzantine-Robust Federated Aggregation Framework

被引:0
|
作者
Yao, Jingyi [1 ,2 ]
Song, Chen [1 ]
Li, Hongjia [1 ]
Wang, Yuxiang [1 ]
Yang, Qian [1 ]
Wang, Liming [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
关键词
D O I
10.1109/WCNC57260.2024.10570631
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) exhibits vulnerabilities to poisoning attacks, where Byzantine FL clients send malicious model updates to hamper the accuracy of the global model. However, these efforts are being circumvented by some more advanced stealthy poisoning attacks. In this paper, we propose an Enclave-aided Byzantine-robust Federated Aggregation (EBFA) framework. In particular, at each FL epoch, we first evaluate the layer-wise cosine similarity between the guide model (learned from an extra validation dataset) and local models, and then, utilize the boxplot method to construct a region of outliers to find Byzantine clients. To avoid the interference to the robust federated aggregation caused by classical privacy-preserving method, such as differential privacy and homomorphic encryption, we further design an efficient privacy-preserving scheme for robust aggregation via Trusted Execution Environment (TEE); and, to improve the efficiency, we only deploy the privacy-sensitive aggregation operations within resource limited TEE (or enclave). Finally, we perform extensive experiments on different datasets, and demonstrate that our proposed EBFA outperforms the state-of-the-art Byzantine-robust schemes (e.g., FLTrust) under non-IID settings. Moreover, our proposed enclave-aided privacy-preserving scheme could significantly improve the efficiency (over 40% for Alexnet) in comparison with the TEE-only scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Lightweight Byzantine-Robust and Privacy-Preserving Federated Learning
    Lu, Zhi
    Lu, Songfeng
    Cui, Yongquan
    Wu, Junjun
    Nie, Hewang
    Xiao, Jue
    Yi, Zepu
    EURO-PAR 2024: PARALLEL PROCESSING, PART II, EURO-PAR 2024, 2024, 14802 : 274 - 287
  • [32] Byzantine-Robust Federated Learning with Variance Reduction and Differential Privacy
    Zhang, Zikai
    Hu, Rui
    2023 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY, CNS, 2023,
  • [33] FLForest: Byzantine-robust Federated Learning through Isolated Forest
    Wang, Tao
    Zhao, Bo
    Fang, Liming
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 296 - 303
  • [34] Byzantine-Robust and Communication-Efficient Personalized Federated Learning
    Zhang, Jiaojiao
    He, Xuechao
    Huang, Yue
    Ling, Qing
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 26 - 39
  • [35] BSR-FL: An Efficient Byzantine-Robust Privacy-Preserving Federated Learning Framework
    Zeng, Honghong
    Li, Jie
    Lou, Jiong
    Yuan, Shijing
    Wu, Chentao
    Zhao, Wei
    Wu, Sijin
    Wang, Zhiwen
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (08) : 2096 - 2110
  • [36] Byzantine-Robust and Privacy-Preserving Federated Learning With Irregular Participants
    Chen, Yinuo
    Tan, Wuzheng
    Zhong, Yijian
    Kang, Yulin
    Yang, Anjia
    Weng, Jian
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 35193 - 35205
  • [37] BRFL: A blockchain-based byzantine-robust federated learning model
    Li, Yang
    Xia, Chunhe
    Li, Chang
    Wang, Tianbo
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2025, 196
  • [38] Communication-Efficient and Byzantine-Robust Differentially Private Federated Learning
    Li, Min
    Xiao, Di
    Liang, Jia
    Huang, Hui
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (08) : 1725 - 1729
  • [39] Byzantine-robust federated learning over Non-IID data
    Ma X.
    Li Q.
    Jiang Q.
    Ma Z.
    Gao S.
    Tian Y.
    Ma J.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (06): : 138 - 153
  • [40] Distance-Statistical based Byzantine-robust algorithms in Federated Learning
    Colosimo, Francesco
    De Rango, Floriano
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 1034 - 1035