共 50 条
Insecticide resistance and characteristics of mutations related to target site insensitivity of diamondback moths in Taiwan
被引:0
|作者:
Chang, Chia-Che
[1
]
Dai, Shu-Mei
[2
]
Chen, Chien-Yu
[3
]
Huang, Li-Hsin
[4
]
Chen, Yu-Hsien
[5
]
Hsu, Ju-Chun
[1
,5
]
机构:
[1] Natl Taiwan Univ, Master MS Program Plant Med, Taipei 10617, Taiwan
[2] Natl Chung Hsing Univ, Dept Entomol, 145 Xingda Rd, Taichung 40227, Taiwan
[3] Natl Taiwan Univ, Dept Biomechatron Engn, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[4] Minist Agr, Agr Chem Res Inst, Pesticide Applicat Div, Taichung 413001, Taiwan
[5] Natl Taiwan Univ, Dept Entomol, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
关键词:
Plutella xylostella;
Insecticide resistance;
Mode of action;
Target site point mutation;
Susceptibility;
PLUTELLA-XYLOSTELLA LEPIDOPTERA;
KNOCKDOWN RESISTANCE;
SODIUM-CHANNEL;
YPONOMEUTIDAE RESISTANCE;
DIAMIDE INSECTICIDES;
FIELD POPULATIONS;
GENE;
ACETYLCHOLINESTERASE;
CHLORANTRANILIPROLE;
SUSCEPTIBILITY;
D O I:
10.1016/j.pestbp.2024.106001
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Diamondback moth (DBM, Plutella xylostella) is the most significant pest of cruciferous vegetables as they rapidly develop high-level resistance to many insecticides. Monitoring DBM susceptibility and target-site mutation frequency is essential for pest control. In this study, 10 insecticides were tested on 11 field populations. Frequencies of target-site mutations (including para, ace1, Rdl1, RyR1, and nAChR alpha 6 genes) were estimated by pyrosequencing. Insecticides registered after 2007 for DBM control in Taiwan, i.e., spinetoram, chlorantraniliprole, chlorfenapyr, metaflumizone, and flubendiamide, showed >80% mortality toward several populations; Bacillus thurigiensis, emamectin benzoate, and chlorfluazuron showed medium to low efficacy in all populations; and tolfenpyrad and mevinphos were highly ineffective. Susceptibility to insecticides varied substantially among populations: eight out of nine populations were highly susceptible to spinetoram, but only one was susceptible to flubendiamide. Target-site mutations related to organophosphates, pyrethroids, fipronil, and diamides were detected in all populations, but there were few spinosad and spinetoram mutations. Our three-year field study demonstrated rapid efficacy loss for all insecticides tested, particularly for more toxic insecticides. Skipped-generation selection of a field DBM strain to emamectin benzoate, metaflumizone, chlorantraniliprole, and flubendiamide revealed that mortality rates dropped from 60 to 80% to <10% after 6 generations. Next-generation sequencing was performed to identify possible target gene mutations. A resistance management program that considers the instability of resistance to some chemicals and pertinent data on resistance mechanisms should be established. Identifying compounds to overcome high-frequency field DBM point mutations could be beneficial for pest control.
引用
收藏
页数:9
相关论文