Assessment of Artificial Anisotropic Materials for Transverse Thermoelectric Generators

被引:1
|
作者
Loehnert, Romy [1 ]
Bochmann, Arne [1 ]
Ibrahim, Ahmed [1 ,2 ]
Toepfer, Joerg [1 ]
机构
[1] Univ Appl Sci Jena, Dept SciTec, Ernst Abbe Hsch Jena, Carl Zeiss Promenade 2, D-07745 Jena, Germany
[2] Friedrich Schiller Univ Jena, Fac Chem & Earth Sci, Humboldtstr 11, D-07743 Jena, Germany
关键词
artificial anisotropic materials; artificially tilted multilayers; finite-element method; Seebeck effects; thermoelectric oxides; transverse thermoelectric effects; transverse thermoelectric generators; ELECTRICAL-RESISTIVITY; POWER; FABRICATION;
D O I
10.1002/pssa.202400321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By alternately stacking layers of two materials that differ in their Seebeck coefficient and electrical and thermal conductivity, a composite material with artificial anisotropy of thermal and electrical transport properties is formed. Due to the transverse Seebeck effect, a thermoelectric (TE) voltage is generated perpendicular to a temperature gradient Delta T, that is applied at a certain angle phi with respect to the stacked layers (0 degrees < phi < 90 degrees). The TE properties of layered artificial anisotropic materials are described analytically using existing concepts and extending the available definitions to develop a consistent image of anisotropic media for TE energy generation. Based on these analytical descriptions, the TE performance of ceramic oxide-metal composites and transverse TE generators (TTEG) made of them are numerically calculated and presented in contour plots. These so-called micro- and macro-Babin plots map the influence of internal geometric parameters, i.e., the layer thickness ratio nu t$\left(\nu\right)_{\text{t}}$ and the angle phi of the applied temperature gradient with respect to the stacked layers. Based on these diagrams, the optimal TTEG geometry can be narrowed down in a simple and fast way. In addition, the diagrams are used for a material screening to evaluate the suitability of different oxide ceramics for use in a TTEG.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Longitudinal and transverse waves in anisotropic elastic materials
    T. C. T. Ting
    Acta Mechanica, 2006, 185 : 147 - 164
  • [22] GROWTH OF TRANSVERSE WAVES IN ANISOTROPIC ELASTIC MATERIALS
    CHEN, PJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1970, 21 (05): : 846 - &
  • [23] Longitudinal and transverse waves in anisotropic elastic materials
    Ting, T. C. T.
    ACTA MECHANICA, 2006, 185 (3-4) : 147 - 164
  • [24] OPERATING CHARACTERISTICS OF TRANSVERSE (NERNST) ANISOTROPIC GALVANO-THERMOMAGNETIC GENERATORS
    HARMON, TC
    HONIG, JM
    APPLIED PHYSICS LETTERS, 1962, 1 (02) : 31 - 32
  • [25] Nanocomposites of CuO/SWCNT: Promising thermoelectric materials for mid-temperature thermoelectric generators
    Salah, Numan
    Baghdadi, Neazar
    Alshahrie, Ahmed
    Saeed, Abdu
    Ansari, A. R.
    Memic, Adnan
    Koumoto, Kunihito
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (11) : 3307 - 3314
  • [26] Integrating Phase-Change Materials into Automotive Thermoelectric Generators
    Altstedde, Mirko Klein
    Rinderknecht, Frank
    Friedrich, Horst
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (06) : 2134 - 2140
  • [27] Organic thermoelectric generators: working principles, materials, and fabrication techniques
    Eryilmaz, Ilknur Hatice
    Chen, Yan-Fang
    Mattana, Giorgio
    Orgiu, Emanuele
    CHEMICAL COMMUNICATIONS, 2023, 59 (22) : 3160 - 3174
  • [28] Recent Advances in Materials for Wearable Thermoelectric Generators and Biosensing Devices
    Sattar, Maria
    Yeo, Woon-Hong
    MATERIALS, 2022, 15 (12)
  • [29] THERMOELECTRIC GENERATORS
    Rowe, David Michael
    ADVANCES IN ELECTRONIC CERAMICS II, 2010, 30 (09): : 107 - 123
  • [30] Thermoelectric efficiency of anisotropic materials with an application in layered systems
    Shi, Wencong
    Woods, Lilia M.
    JOURNAL OF PHYSICS-ENERGY, 2022, 4 (01):