Operationalizing Explainable Artificial Intelligence in the European Union Regulatory Ecosystem

被引:1
|
作者
Nannini, Luca [1 ]
Alonso-Moral, Jose Maria [2 ]
Catala, Alejandro [2 ]
Lama, Manuel [2 ]
Barro, Senen [2 ]
机构
[1] Minsait Indra Sistemas, Madrid 28108, Spain
[2] Univ Santiago de Compostela, Santiago De Compostela 15782, Spain
关键词
Artificial intelligence; Law; Regulation; Intelligent systems; Ecosystems; Stakeholders; Explainable AI; Sociotechnical systems; Europe;
D O I
10.1109/MIS.2024.3383155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The European Union's (EU's) regulatory ecosystem presents challenges with balancing legal and sociotechnical drivers for explainable artificial intelligence (XAI) systems. Core tensions emerge on dimensions of oversight, user needs, and litigation. This article maps provisions on algorithmic transparency and explainability across major EU data, AI, and platform policies using qualitative analysis. We characterize the involved stakeholders and organizational implementation targets. Constraints become visible between useful transparency for accountability and confidentiality protections. Through an AI hiring system example, we explore the complications with operationalizing explainability. Customization is required to satisfy explainability desires within confidentiality and proportionality bounds. The findings advise technologists on prudent XAI technique selection given multidimensional tensions. The outcomes recommend that policy makers balance worthy transparency goals with cohesive legislation, enabling equitable dispute resolution.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 50 条
  • [32] Military artificial intelligence as power: consideration for European Union actorness
    Justinas Lingevicius
    [J]. Ethics and Information Technology, 2023, 25
  • [33] Memristive Explainable Artificial Intelligence Hardware
    Song, Hanchan
    Park, Woojoon
    Kim, Gwangmin
    Choi, Moon Gu
    In, Jae Hyun
    Rhee, Hakseung
    Kim, Kyung Min
    [J]. ADVANCED MATERIALS, 2024, 36 (25)
  • [34] Effects of Explainable Artificial Intelligence in Neurology
    Gombolay, G.
    Silva, A.
    Schrum, M.
    Dutt, M.
    Hallman-Cooper, J.
    Gombolay, M.
    [J]. ANNALS OF NEUROLOGY, 2023, 94 : S145 - S145
  • [35] Drug discovery with explainable artificial intelligence
    Jimenez-Luna, Jose
    Grisoni, Francesca
    Schneider, Gisbert
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (10) : 573 - 584
  • [36] Drug discovery with explainable artificial intelligence
    José Jiménez-Luna
    Francesca Grisoni
    Gisbert Schneider
    [J]. Nature Machine Intelligence, 2020, 2 : 573 - 584
  • [37] Explainable Artificial Intelligence for Combating Cyberbullying
    Tesfagergish, Senait Gebremichael
    Damasevicius, Robertas
    [J]. SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 1, ICSOFTCOMP 2023, 2024, 2030 : 54 - 67
  • [38] Explainable and responsible artificial intelligence PREFACE
    Meske, Christian
    Abedin, Babak
    Klier, Mathias
    Rabhi, Fethi
    [J]. ELECTRONIC MARKETS, 2022, 32 (04) : 2103 - 2106
  • [39] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    [J]. COMPUTER, 2021, 54 (10) : 25 - 27
  • [40] A review of Explainable Artificial Intelligence in healthcare
    Sadeghi, Zahra
    Alizadehsani, Roohallah
    Cifci, Mehmet Akif
    Kausar, Samina
    Rehman, Rizwan
    Mahanta, Priyakshi
    Bora, Pranjal Kumar
    Almasri, Ammar
    Alkhawaldeh, Rami S.
    Hussain, Sadiq
    Alatas, Bilal
    Shoeibi, Afshin
    Moosaei, Hossein
    Hladik, Milan
    Nahavandi, Saeid
    Pardalos, Panos M.
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118