Quantum thermometry based on interferometric power

被引:0
|
作者
Yang, Hongying [1 ]
Zheng, Qiang [2 ]
Yue, Ping [1 ]
Zhi, Qijun [3 ,4 ]
机构
[1] Guizhou Med Univ, Sch Biol & Engn, Guiyang 550025, Peoples R China
[2] Tiangong Univ, Sch Phys Sci & Technol, Tianjin 300387, Peoples R China
[3] Guizhou Normal Univ, Sch Phys & Elect Sci, Guiyang 550001, Peoples R China
[4] Guizhou Normal Univ, Guizhou Prov Key Lab Radio Astron & Data Proc, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1209/0295-5075/ad3c2f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the field of quantum thermometry, usually temperature is estimated by the framework of quantum metrology. In this work, an alternative approach to quantum thermometry is suggested, based on interferometric power (IP). IP is defined as the worst-case quantum Fisher information in a double-channel interferometer. Specifically, the time evolution of the IP for a two-qubit state as a probe contacting with a finite-temperature bath is considered. The IP dynamics of the probe with three kinds of initial states (i.e., entangled, separable, and mixed) strongly depend on the bath temperature. The dynamical evolution of IP would be measured experimentally, considering that the IP is a measurable quantity in the experiment. Thus, the IP dynamics can be adopted to extract the value of the bath temperature directly. In this sense, the IP could be exploited as a quantum thermometer. Copyright (c) 2024 EPLA
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Quantum-dot thermometry
    Hoffmann, E. A.
    Nakpathomkun, N.
    Persson, A. I.
    Linke, H.
    Nilsson, H. A.
    Samuelson, L.
    APPLIED PHYSICS LETTERS, 2007, 91 (25)
  • [42] Stochastic Collisional Quantum Thermometry
    O'Connor, Eoin
    Vacchini, Bassano
    Campbell, Steve
    ENTROPY, 2021, 23 (12)
  • [43] Nanoscale Thermometry with a Quantum Dot
    Eric A. Hoffmann
    Heiner Linke
    Journal of Low Temperature Physics, 2009, 154 : 161 - 171
  • [44] Nanoscale Thermometry with a Quantum Dot
    Hoffmann, Eric A.
    Linke, Heiner
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2009, 154 (5-6) : 161 - 171
  • [45] Optimal quantum thermometry by dephasing
    Xie, Dong
    Xu, Chunling
    Wang, An Min
    QUANTUM INFORMATION PROCESSING, 2017, 16 (06)
  • [46] Quantum interferometric sensors
    Didomenico, LD
    Lee, H
    Kok, P
    Dowling, JP
    QUANTUM SENSING AND NANOPHOTONIC DEVICES, 2004, 5359 : 169 - 176
  • [47] Quantum interferometric sensors
    Kapale, Kishore T.
    Didomenico, Leo D.
    Lee, Hwang
    Kok, Pieter
    Dowling, Jonathan P.
    NOISE AND FLUCTUATIONS IN PHOTONICS, QUANTUM OPTICS, AND COMMUNICATIONS, 2007, 6603
  • [48] Interferometric quantum sensors
    de Cumis, M. Siciliani
    Marino, F.
    Anderlini, M.
    Cataliotti, F. S.
    Marin, F.
    Rimini, E.
    D'Arrigo, G.
    SMART OPTICS, 2009, 55 : 154 - +
  • [49] QUANTUM CRYPTOGRAPHY WITH INTERFEROMETRIC QUANTUM ENTANGLEMENT
    EKERT, AK
    PALMA, GM
    JOURNAL OF MODERN OPTICS, 1994, 41 (12) : 2413 - 2423
  • [50] Johnson Noise Thermometry Based on Integrated Quantum Voltage Noise Source
    Urano, Chiharu
    Yamada, Takahiro
    Maezawa, Masaaki
    Yamazawa, Kazuaki
    Okazaki, Yuma
    Fukuyama, Yasuhiro
    Kaneko, Nobu-hisa
    Yamamori, Hirotake
    Maruyama, Michitaka
    Domae, Atsushi
    Tamba, Jun
    Yoshida, Shunsuke
    Kiryu, Shogo
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)