Timeliness and Secrecy-Aware Uplink Data Aggregation for Large-Scale UAV-IoT Networks

被引:1
|
作者
Ma, Yaodong [1 ,2 ]
Liu, Kai [1 ,2 ]
Liu, Yanming [1 ,2 ]
Zhu, Lipeng [3 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 10期
基金
中国国家自然科学基金;
关键词
Internet of Things; Jamming; Autonomous aerial vehicles; Games; Security; Stochastic processes; Interference; Cooperative jamming; data aggregation; large-scale UAV-IoT network; secrecy; Stackelberg game; stochastic geometry; timeliness; PHYSICAL LAYER SECURITY; COVERT COMMUNICATION; AGE; INFORMATION; TIME; INTERNET;
D O I
10.1109/JIOT.2024.3357123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the inherent characteristics of system extensibility and implementation flexibility, unmanned aerial vehicle (UAV)-assisted data aggregations will play an essential role in Internet of Things (IoT) networks, where both communication security and timeliness are of high priority. In this article, we study uplink data aggregation in cooperative jamming-aided large-scale UAV-IoT networks under the threat of eavesdroppers. By employing stochastic geometry, we derive performance metrics related to the age of information (AoI) and secrecy outage probability (SOP) in a system-level manner, and formulate the combat between legitimate entities (i.e., IoT devices and cooperative jammers) and eavesdroppers as a two-stage Stackelberg game. To solve the formulated game, the backward induction method is utilized to obtain the Stackelberg equilibrium (SE) iteratively. Specifically, we first obtain the minimum detection error probability for the eavesdropper by optimizing its detection threshold using the successive convex approximation (SCA) technique. Subsequently, the minimization of AoI violation probability and SOP for the legitimate entity is achieved using the proposed tighter alpha branch and bound (T- alpha BB) method by jointly optimizing the transmit powers of the typical IoT device and cooperative jammers as well as the deployment altitude of the typical UAV. Extensive numerical results demonstrate that the proposed solution converges rapidly, with the timeliness and secrecy metrics decreasing by 25.1%, 33.1%, 35.9%, and 37.6% compared to the benchmark scheme in suburban, urban, dense urban, and high-rise urban environments, respectively.
引用
收藏
页码:17341 / 17356
页数:16
相关论文
共 50 条
  • [41] Secrecy Performance Analysis in Large-scale Cellular Networks Via Stochastic Geometry
    Tao, Liwei
    Yang, Weiwei
    Cai, Yueming
    Chen, Dechuan
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1444 - 1449
  • [42] CEDAN: Cost-Effective Data Aggregation for UAV-Enabled IoT Networks
    Bera, Abhishek
    Misra, Sudip
    Chatterjee, Chandranath
    Mao, Shiwen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (09) : 5053 - 5063
  • [43] Privacy-Preserving Multimedia Big Data Aggregation in Large-Scale Wireless Sensor Networks
    Wu, Dapeng
    Yang, Boran
    Wang, Honggang
    Wang, Chonggang
    Wang, Ruyan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2016, 12 (04)
  • [44] Dynamic interference for uplink SCMA in large-scale wireless networks without coordination
    Egan, Malcolm
    Clavier, Laurent
    Zheng, Ce
    de Freitas, Mauro
    Gorce, Jean-Marie
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2018,
  • [45] Dynamic interference for uplink SCMA in large-scale wireless networks without coordination
    Malcolm Egan
    Laurent Clavier
    Ce Zheng
    Mauro de Freitas
    Jean-Marie Gorce
    EURASIP Journal on Wireless Communications and Networking, 2018
  • [46] Data aggregation with end-to-end confidentiality and integrity for large-scale wireless sensor networks
    Jie Cui
    Lili Shao
    Hong Zhong
    Yan Xu
    Lu Liu
    Peer-to-Peer Networking and Applications, 2018, 11 : 1022 - 1037
  • [47] Data aggregation with end-to-end confidentiality and integrity for large-scale wireless sensor networks
    Cui, Jie
    Shao, Lili
    Zhong, Hong
    Xu, Yan
    Liu, Lu
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2018, 11 (05) : 1022 - 1037
  • [48] On Efficient UAV Charging Trajectory for Large-scale Wireless Sensor Networks
    Zhang, Rongrong
    Qiao, Yingying
    Li, Hui
    Li, Mengyu
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5571 - 5576
  • [49] Virtual backbone construction for large-scale ad hoc UAV networks
    Yu, Hai
    Liu, Qin
    Huang, Hejiao
    Jia, Xiaohua
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2019, 31 (04) : 216 - 225
  • [50] A Data Distribution Model for Large-Scale Context Aware Systems
    Chattopadhyay, Soumi
    Banerjee, Ansuman
    Banerjee, Nilanjan
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING, AND SERVICES, 2014, 131 : 615 - 627