Strong hetero-interface interaction in 2D/2D WSe2/ZnIn2S4 heterostructures for highly-efficient photocatalytic hydrogen generation

被引:1
|
作者
Guo, Xu [1 ,2 ]
Liu, Xing [2 ]
Shan, Jing [2 ]
Xu, Zhuo [2 ]
Fang, Zhiming [2 ]
Wang, Lu [3 ]
Liu, Shengzhong [2 ,4 ,5 ]
机构
[1] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
[2] Shaanxi Normal Univ, Sch Mat Sci & Engn, Shaanxi Key Lab Adv Energy Devices, Xian 710119, Shaanxi, Peoples R China
[3] State Power Investment Corp, SPIC Qinghai Photovolta Ind Innovat Ctr Co Ltd, Qinghai Adv Energy Storage Lab, Xining 810007, Qinghai, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Photoelect Convers & Utilizat Solar Energy, Dalian 116023, Liaoning, Peoples R China
[5] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
ZNIN2S4; NANOSHEETS; SULFUR VACANCIES; CHARGE-TRANSFER; H-2; EVOLUTION; COCATALYST; SITES; CONSTRUCTION; FABRICATION; COMPOSITES;
D O I
10.1016/j.jechem.2024.05.047
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation. Herein, 2D/2D WSe 2 /ZnIn 2 S 4 heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy. Efficient charge transfer from ZnIn 2 S 4 to WSe 2 was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and 2D face-to-face contact. As a result, the prepared WSe 2 /ZnIn 2 S 4 heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h) was achieved with an apparent quantum yield of 45.7% at 420 nm. The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:379 / 387
页数:9
相关论文
共 50 条
  • [31] Carrier conductance in 2D WSe2 films
    Browning, Robert
    Plachinda, Paul
    Solanki, Raj
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (10)
  • [32] Interfacial reconstruction of 2D/2D CuS/ZnIn2S4 through interface S-S bonds for boosted near-infrared driven photothermal-assisted photocatalytic hydrogen production
    Chen, Zhouze
    Yan, Yujie
    Shan, Pengnian
    Bian, Ang
    Kong, Wei
    Proskurin, Arkadii
    Guo, Li
    Hou, Jianhua
    Liu, Zhuo
    Wang, Guangzhao
    Shi, Weilong
    Lu, Changyu
    Journal of Alloys and Compounds, 1600, 1009
  • [33] Rational design of 2D/2D ZnIn2S4/C3N4 heterojunction photocatalysts for enhanced photocatalytic H2 production
    Guan, Peng
    Han, Peigeng
    Yang, Bin
    Yin, Hang
    Liu, Jianyong
    Yang, Songqiu
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (14) : 6583 - 6590
  • [34] High-Performance WSe2 Phototransistors with 2D/2D Ohmic Contacts
    Wang, Tianjiao
    Andrews, Kraig
    Bowman, Arthur
    Hong, Tu
    Koehler, Michael
    Yan, Jiaqiang
    Mandrus, David
    Zhou, Zhixian
    Xu, Ya-Qiong
    NANO LETTERS, 2018, 18 (05) : 2766 - 2771
  • [35] Constructing a direct Z- scheme photocatalytic system based on 2D/ 2D WO3/ ZnIn2S4 nanocomposite for efficient hydrogen evolution under visible light
    Tan, Pengfei
    Zhu, Anquan
    Qiao, Lulu
    Zeng, Weixuan
    Ma, Yongjin
    Dong, Haigang
    Xie, Jianping
    Pan, Jun
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (04) : 929 - 939
  • [36] In-Situ Construction of 2D/2D ZnIn2S4/BiOCl Heterostructure with Enhanced Photocatalytic Activity for N2 Fixation and Phenol Degradation
    Guo, Li
    Han, Xuanxuan
    Zhang, Kailai
    Zhang, Yuanyuan
    Zhao, Qiang
    Wang, Danjun
    Fu, Feng
    CATALYSTS, 2019, 9 (09)
  • [37] Facile photodeposition Ni(OH)2 anchored ZnIn2S4 as an efficient 1D/2D heterojunctions for photocatalytic H2 evolution
    Chen, Ruolin
    Zhu, Hongxun
    Liu, Wen
    Zhan, Difu
    Fu, Qian
    Tian, Jiayi
    Huang, Yizhong
    Han, Changchun
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (08) : 5201 - 5211
  • [38] In-situ Construction of 2D/3D ZnIn2S4/TiO2 with Enhanced Photocatalytic Performance
    Liu, Huan
    Li, Li
    Li, Ping
    Zhang, Guangzhi
    Xu, Xun
    Zhang, Hao
    Qiu, Lingfang
    Qi, Hui
    Duo, Shuwang
    ACTA CHIMICA SINICA, 2021, 79 (10) : 1293 - 1301
  • [39] Fabrication of 0D/2D amorphous NixB/ZnIn2S4 S-scheme for enhanced photocatalytic hydrogen evolution performance
    Wang, Xiaowei
    Liu, Ying
    Qianqian, Liu
    Zhang, Weiwei
    Shi, Lei
    OPTICAL MATERIALS, 2024, 154
  • [40] Hierarchical 0D NiSe2/2D ZnIn2S4 Nanosheet-Assembled Microflowers for Enhanced Photocatalytic Hydrogen Evolution
    Lai, Lijuan
    Xing, Fangshu
    Cheng, Chuchu
    Huang, Caijin
    ADVANCED MATERIALS INTERFACES, 2021, 8 (09):