Three Weak Solutions for a Class of Quasilinear Choquard Equations Involving the Fractional p(x, .)-Laplacian Operator with Weight

被引:0
|
作者
Harcha, H. [1 ]
Belaouidel, H. [1 ]
Chakrone, O. [1 ]
Tsouli, N. [1 ]
机构
[1] Univ Mohammed First, Fac Sci, Dept Math, Oujda, Morocco
关键词
Quasilinear Choquard equations; fractional p ( x. )-Laplacian with weight; variational methods; nonlinear Elliptic equations; SPACES; FUNCTIONALS;
D O I
10.5269/bspm.62890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the existence of at least three weak solutions to a problem involving the fractional p ( x, . )- Laplacian operator with weight. Our method used for obtaining the existence of three solutions for a class of Choquard equations is based on the variational method concerned a type of version of Ricceri.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Infinitely Many Solutions for Schrödinger-Choquard-Kirchhoff Equations Involving the Fractional p-Laplacian
    Li Wang
    Tao Han
    Ji Xiu Wang
    Acta Mathematica Sinica, English Series, 2021, 37 : 315 - 332
  • [32] Symmetry and monotonicity of positive solutions for Choquard equations involving a generalized tempered fractional p-Laplacian in Rn
    Fan, Linlin
    Cao, Linfen
    Zhao, Peibiao
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2757 - 2773
  • [33] EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 539 - 555
  • [34] Multiple solutions for a class of p(x)-Laplacian equations involving the critical exponent
    Zhang, Xing
    Zhang, Xia
    Fu, Yongqiang
    ANNALES POLONICI MATHEMATICI, 2010, 98 (01) : 91 - 102
  • [35] Multiplicity of solutions for a class of fractional Choquard–Kirchhoff equations involving critical nonlinearity
    Fuliang Wang
    Mingqi Xiang
    Analysis and Mathematical Physics, 2019, 9 : 1 - 16
  • [36] Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the p(x)-Laplacian Operator
    Ghanmi, A.
    Mbarki, L.
    Saoudi, K.
    MATHEMATICAL NOTES, 2023, 113 (1-2) : 172 - 181
  • [37] EXISTENCE OF SOLUTIONS FOR A CLASS OF NONLINEAR TYPE PROBLEMS INVOLVING THE p(x)-LAPLACIAN OPERATOR
    Allaoui, Mostafa
    Darhouche, Omar
    El Amrouss, Abderrachid
    Tsouli, Najib
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, Mathematical Research Press (2020):
  • [38] SYMMETRY OF SINGULAR SOLUTIONS FOR A WEIGHTED CHOQUARD EQUATION INVOLVING THE FRACTIONAL p-LAPLACIAN
    Phuong Le
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 527 - 539
  • [39] Multiple Normalized Solutions to a Choquard Equation Involving Fractional p-Laplacian in RN
    Zhang, Xin
    Liang, Sihua
    FRACTAL AND FRACTIONAL, 2024, 8 (06)
  • [40] Multiplicity of Solutions for Quasilinear p(x)-Laplacian Equations in RN
    Jia, Gao
    Guo, Lu-Qian
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (01): : 109 - 128