Heterogeneous microstructure and mechanical properties of carbon-doped FeCoCrNiMn high-entropy alloy

被引:0
|
作者
Guo, Lin [1 ]
Gu, Ji [2 ]
Dai, Yi-long [1 ]
Lin, Jian-guo [1 ]
Song, Min [2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
high-entropy alloy; heterogeneous microstructure; bimodal grain; mechanical properties; strengthening mechanism; STACKING-FAULT ENERGY; TENSILE PROPERTIES; DEFORMATION; PRECIPITATION; DISLOCATION; PLASTICITY; EVOLUTION; DESIGN; RECRYSTALLIZATION; NUCLEATION;
D O I
10.1016/S1003-6326(24)66514-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Heterogeneous microstructure with nano-precipitate and bimodal grain size distribution was obtained in a FeCoCrNiMn high-entropy alloy (HEA) doped with 0.5 at.% C by a controlled thermo-mechanical treatment. The coarse M23C6 carbides tend to aggregate along the fine grain boundaries. Compared to the sample with homogenous microstructure, the heterostructure FeCoCrNiMn-0.5at.%C HEA has approximately the same average grain size of 4.8 mu m. However, it shows bimodal grain size distribution and higher volume fraction of the fine grains (<3 mu m), resulting in the increase of yield strength from 552 to 632 MPa. The sample with heterostructure presents different mechanical responses and deformed microstructures in different regions, accounting for significant strain localization and high density of the geometrically necessary dislocations during tensile deformation. These deformation characteristics are beneficial to the enhancement of strain hardening capacity, thereby promoting strength-ductility synergy.
引用
收藏
页码:1893 / 1907
页数:15
相关论文
共 50 条
  • [21] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Shabani, Ali
    Toroghinejad, Mohammad Reza
    Shafyei, Ali
    Loge, Roland E.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (04) : 2388 - 2398
  • [22] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Ali Shabani
    Mohammad Reza Toroghinejad
    Ali Shafyei
    Roland E. Logé
    Journal of Materials Engineering and Performance, 2019, 28 : 2388 - 2398
  • [23] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Mina Zhang
    Xianglin Zhou
    Jinghao Li
    Journal of Materials Engineering and Performance, 2017, 26 : 3657 - 3665
  • [24] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Gludovatz, Bernd
    George, Easo P.
    Ritchie, Robert O.
    JOM, 2015, 67 (10) : 2262 - 2270
  • [25] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Zhang, Mina
    Zhou, Xianglin
    Li, Jinghao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (08) : 3657 - 3665
  • [26] Microstructure and mechanical properties of CoCrFeNiMo high-entropy alloy coatings
    Qiu, Xingwu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (03): : 5127 - 5133
  • [27] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF REFRACTORY HIGH-ENTROPY ALLOY HfMoNbTiCr
    Yi, Jiaojiao
    Wang, Lu
    Xu, Mingqin
    Yang, Lin
    MATERIALI IN TEHNOLOGIJE, 2021, 55 (02): : 305 - 310
  • [28] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Bernd Gludovatz
    Easo P. George
    Robert O. Ritchie
    JOM, 2015, 67 : 2262 - 2270
  • [29] Mechanical properties and microstructure of laser welded FeCoNiCrMn high-entropy alloy
    Chen, Zhen
    Wang, Bingfeng
    Duan, Bohua
    Zhang, Xiaoyong
    MATERIALS LETTERS, 2020, 262
  • [30] Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy
    Chen, W.
    Tang, Q. H.
    Wang, H.
    Xie, Y. C.
    Yan, X. H.
    Dai, P. Q.
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (11) : 1309 - 1315