Deep Reinforcement Learning-Based Smart Grid Resource Allocation System

被引:0
|
作者
Lang, Qiong [1 ]
Zhu, La Ba Dun [1 ]
Ren, Mi Ma Ci [1 ]
Zhang, Rui [2 ]
Wu, Yinghen [1 ]
He, Wenting [1 ]
Li, Mingjia [1 ]
机构
[1] State Grid Tibet Elect Power Co Ltd, Tibet, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Nanjing, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS | 2024年
关键词
Markov Decision Process; Deep Reinforcement Learning; Grid Resource Allocation; Distribution Network;
D O I
10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00125
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The existing power grid scheduling systems often use a distributed generation model. Because they need to manage multiple independent generators simultaneously, this system may be more complex in terms of coordination, scheduling, and maintenance. In addition, the variability and intermittency of renewable energy resources can lead to reliability issues, causing grid instability. To address issues such as resource wastage, high costs, and grid instability that occur during the power grid resource scheduling process, this paper proposes an intelligent power distribution system to achieve a rational allocation of electrical resources throughout the network. Firstly, the algorithm introduces a deep learning-based node fault detection module to address the problem of the lack of real-time monitoring and fault detection capabilities in traditional distribution networks. Secondly, by modeling it as a Markov decision process (MDP), it constructs state, action, and reward functions and uses a deep reinforcement learning module based on double deep Q-network (DDQN) to optimize the objective function. This ensures the allocation of power resources during peak periods, reduces energy waste, and avoids overloads. Experiments show that this algorithm has excellent fault localization capabilities, improving the stability of the grid during peak electricity demand periods. Additionally, it offers more flexibility in resource scheduling, enabling more precise resource allocation.
引用
收藏
页码:703 / 707
页数:5
相关论文
共 50 条
  • [31] Reinforcement Learning-Based UAVs Resource Allocation for Integrated Sensing and Communication (ISAC) System
    Wang, Min
    Chen, Peng
    Cao, Zhenxin
    Chen, Yun
    ELECTRONICS, 2022, 11 (03)
  • [32] Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Wang, Jiadai
    Zhao, Lei
    Liu, Jiajia
    Kato, Nei
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (03) : 1529 - 1541
  • [33] Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Liu, Jiajia (liujiajia@nwpu.edu.cn), 1600, IEEE Computer Society (09):
  • [34] Deep Reinforcement Learning Based Resource Allocation for Heterogeneous Networks
    Yang, Helin
    Zhao, Jun
    Lam, Kwok-Yan
    Garg, Sahil
    Wu, Qingqing
    Xiong, Zehui
    2021 17TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2021), 2021, : 253 - 258
  • [35] Network Resource Allocation Strategy Based on Deep Reinforcement Learning
    Zhang, Shidong
    Wang, Chao
    Zhang, Junsan
    Duan, Youxiang
    You, Xinhong
    Zhang, Peiying
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2020, 1 (01): : 86 - 94
  • [36] Resource allocation algorithm for MEC based on Deep Reinforcement Learning
    Wang, Yijie
    Chen, Xin
    Chen, Ying
    Du, Shougang
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [37] Reinforcement Learning-Based NOMA Power Allocation in the Presence of Smart Jamming
    Xiao, Liang
    Li, Yanda
    Dai, Canhuang
    Dai, Huaiyu
    Poor, H. Vincent
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (04) : 3377 - 3389
  • [38] Resource Allocation for Multi-service NOMA System Based on Deep Reinforcement Learning
    Zhang, Zhenyu
    Zheng, Weijun
    Shao, Weiping
    Zhang, Yong
    Guo, Da
    HUMAN CENTERED COMPUTING, HCC 2021, 2022, 13795 : 219 - 231
  • [39] Reinforcement Learning-based Routing Optimization Model for Smart Grid Scenarios
    Fu, Jiajia
    Zhang, Peiming
    Liu, Yuanjie
    PROCEEDINGS OF THE 2024 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATION AND SENSOR NETWORKS, ICWCSN 2024, 2024, : 39 - 43
  • [40] Reinforcement Learning-based Resource Allocation in Quantum Key Distribution Networks
    Zuo, Yingmin
    Zhao, Yongli
    Yu, Xiaosong
    Nag, Avishek
    Zhang, Jie
    2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC), 2020,