Exact quantiles of Gaussian process extremes

被引:3
|
作者
Yang, Lijian [1 ,2 ]
机构
[1] Tsinghua Univ, Ctr Stat Sci, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Continuous distribution; Density; Finite rank; Strictly increasing; MAXIMUM;
D O I
10.1016/j.spl.2024.110173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under nearly minimal conditions, continuity of extreme distribution function is established for both continuous Gaussian processes and finite Gaussian sequences, which entails existence of exact quantiles at any level. Also proved under simple conditions is strict monotonicity of extreme distribution functions that ensures uniqueness of exact quantiles at any level. These results provide convenient tools for developing statistical theory about global inference on functions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Bayesian quantiles of extremes
    Miladinovic B.
    Tsokos C.P.
    Journal of Statistical Theory and Practice, 2012, 6 (3) : 566 - 579
  • [2] Extremes of a Gaussian Process and the Constant Hα
    Ju¨rg Hu¨sler
    Extremes, 1999, 2 (1) : 59 - 70
  • [3] Extremes of vector-valued Gaussian processes: Exact asymptotics
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Ji, Lanpeng
    Tabis, Kamil
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4039 - 4065
  • [4] Exact Gaussian Process Regression with Distributed Computations
    Duc-Trung Nguyen
    Filippone, Maurizio
    Michiardi, Pietro
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1286 - 1295
  • [5] Probabilities of high extremes for a Gaussian stationary process in a random environment
    Kleban A.O.
    Korulin M.V.
    Moscow University Mathematics Bulletin, 2017, 72 (1) : 10 - 14
  • [6] An extended Gaussian max-stable process model for spatial extremes
    Smith, Elizabeth L.
    Stephenson, Alec G.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) : 1266 - 1275
  • [7] Best exact nonparametric confidence intervals for quantiles
    Zielinski, R
    Zielinski, W
    STATISTICS, 2005, 39 (01) : 67 - 71
  • [8] Exact Inference for Continuous-Time Gaussian Process Dynamics
    Ensinger, Katharina
    Tagliapietra, Nicholas
    Ziesche, Sebastian
    Trimpe, Sebastian
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 11, 2024, : 11883 - 11891
  • [9] EXPANSIONS FOR QUANTILES AND MULTIVARIATE MOMENTS OF EXTREMES FOR HEAVY TAILED DISTRIBUTIONS
    Withers, Christopher
    Nadarajah, Saralees
    REVSTAT-STATISTICAL JOURNAL, 2017, 15 (01) : 25 - 43
  • [10] Time domain simulation of jack-up dynamics with the extremes of a Gaussian process
    Technical Univ of Delft, Delft, Netherlands
    J Vib Acoust Trans ASME, 4 (624-628):