Lithium Bis(Trifluoromethanesulfonyl)Imide (LiTFSI): A Prominent Lithium Salt in Lithium-Ion Battery Electrolytes - Fundamentals, Progress, and Future Perspectives

被引:17
|
作者
Li, Zhen [1 ,2 ]
Wang, Li [2 ]
Huang, Xiaodong [1 ]
He, Xiangming [2 ]
机构
[1] Southeast Univ, Sch Integrated Circuits, Key Lab MEMS, Minist Educ, Nanjing 210096, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolyte additives; Li-ion batteries; LiTFSI; lithium salt; solid electrolyte interphase; ALUMINUM CORROSION; ETHYLENE CARBONATE; CURRENT COLLECTOR; ANODIC BEHAVIOR; LI-METAL; ADDITIVES; CELLS;
D O I
10.1002/adfm.202408319
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is a widely used lithium (Li) salt that is extensively studied in the field of electrolytes for Li-ion batteries (LIBs) to improve their performance. A thorough understanding of its underlying mechanisms in LIBs is crucial for gaining deeper insights into its future development. This paper provides an extensive review of the role of LiTFSI in enhancing battery performance, including its benefits for negative electrode protection, the facilitation of fast charging capabilities, and the promotion of battery operation across a wide temperature range. It also highlights the specific drawbacks of LiTFSI in the electrolyte domain and examines potential solutions. By leveraging the unique properties of LiTFSI, the strategies for its effective utilization in current research are outlined. Finally, the paper discusses the lack of research into the mechanism of LiTFSI in interface protection, particularly the evolution mechanisms of multi-component Li salts at the positive and negative electrode interfaces, and it reasonably anticipates the potential applications of LiTFSI in the realm of non-liquid batteries. This study not only provides a more comprehensive and profound understanding of LiTFSI but also aids in the exploration of novel electrolyte systems. LiTFSI shows high solubility due to its structure, which enhances delocalization of negative charges. It is thermally stable, resists hydrolysis, and has high ion conductivity, making it a promising electrolyte salt for Li-ion batteries. However, its passivation capability toward the positive electrode need improvement, prompting research in using LiTFSI in multi-component Li salt electrolytes for enhanced performance. image
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A study on sulfites for lithium-ion battery electrolytes
    Yu, Bi Tao
    Qiu, Wei Hua
    Li, Fu Shen
    Cheng, Li
    JOURNAL OF POWER SOURCES, 2006, 158 (02) : 1373 - 1378
  • [22] Perspectives and challenges for future lithium-ion battery control and management
    Wang, Yujie
    Zhang, Xingchen
    Li, Kaiquan
    Zhao, Guanghui
    Chen, Zonghai
    ETRANSPORTATION, 2023, 18
  • [23] Flammability parameters of lithium-ion battery electrolytes
    Swiderska-Mocek, A.
    Jakobczyk, P.
    Rudnicka, E.
    Lewandowski, A.
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 318
  • [24] Silyl electrolytes for lithium-ion battery applications
    Lyons, Leslie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [25] Fluorocyanoesters as Additives for Lithium-Ion Battery Electrolytes
    Walton, Joshua J.
    Hiasa, Takumi
    Kumita, Hideyuki
    Takeshi, Kazumasa
    Sandford, Graham
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (13) : 15893 - 15902
  • [26] Thermal stability of lithium-ion battery electrolytes
    Ravdel, B
    Abraham, KM
    Gitzendanner, R
    DiCarlo, J
    Lucht, B
    Campion, C
    JOURNAL OF POWER SOURCES, 2003, 119 : 805 - 810
  • [27] Research Progress on Lithium Titanate as Anode Material in Lithium-ion Battery
    Yi, Tan
    Bing, Xue
    JOURNAL OF INORGANIC MATERIALS, 2018, 33 (05) : 475 - 482
  • [28] Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives
    Wenjia Zhao
    Jin Yi
    Ping He
    Haoshen Zhou
    Electrochemical Energy Reviews, 2019, 2 : 574 - 605
  • [29] Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives
    Zhao, Wenjia
    Yi, Jin
    He, Ping
    Zhou, Haoshen
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (04) : 574 - 605
  • [30] Comparative study of lithium bis(oxalato) borate and lithium bis(fluorosulfonyl) imide on lithium manganese oxide spinel lithium-ion batteries
    Wang, Renheng
    Li, Xinhai
    Wang, Zhixing
    Guo, Huajun
    Su, Mingru
    Hou, Tao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 624 : 74 - 84