Explainable artificial intelligence framework for FRP composites design

被引:1
|
作者
Yossef, Mostafa [1 ,2 ]
Noureldin, Mohamed [1 ]
Alqabbany, Aghyad [1 ]
机构
[1] Aalto Univ, Espoo, Finland
[2] Arab Acad Sci Technol & Maritime Transport, Cairo, Egypt
关键词
Composite design; FRP; Explainable artificial intelligence; Machine Learning; Counterfactual; Casual AI; SHapley Additive exPlanations; Partial Dependence Plots;
D O I
10.1016/j.compstruct.2024.118190
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Fiber-reinforced polymer (FRP) materials are integral to various industries, from automotive and aerospace to infrastructure and construction. While FRP composite design guidelines have been established, the process of obtaining the desired strength of an FRP composite demands considerable time and resources. Despite recent advancements in Machine Learning (ML) models which are commonly used as predictive models, the inherent 'black box' nature of those models poses challenges in understanding the relationship between input design parameters and output strength of the composite. Moreover, these models do not provide tools to facilitate the designing process of the composite. The current study introduces an explainable Artificial Intelligence (XAI) framework that will provide understanding for the input-output relationships of the model through SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDPs). In addition, the framework provides for the first time a designing approach for adjusting the important design parameters to obtain the desired composite strength by the designer through utilizing an explainability technique called Counterfactual (CF). The framework is evaluated through the design of a 14-ply composite, successfully identifying critical design parameters, and specifying necessary adjustments to meet strength requirements.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Understanding the dilemma of explainable artificial intelligence: a proposal for a ritual dialog framework
    Bao, Aorigele
    Zeng, Yi
    HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2024, 11 (01):
  • [22] A unified and practical user-centric framework for explainable artificial intelligence
    Kaplan, Sinan
    Uusitalo, Hannu
    Lensu, Lasse
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [23] Explainable Artificial Intelligence for Kids
    Alonso, Jose M.
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 134 - 141
  • [24] Explainable and Trustworthy Artificial Intelligence
    Alonso-Moral, Jose Maria
    Mencar, Corrado
    Ishibuchi, Hisao
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (01) : 14 - 15
  • [25] Review of Explainable Artificial Intelligence
    Zhao, Yanyu
    Zhao, Xiaoyong
    Wang, Lei
    Wang, Ningning
    Computer Engineering and Applications, 2023, 59 (14) : 1 - 14
  • [26] Explainable artificial intelligence in pathology
    Klauschen, Frederick
    Dippel, Jonas
    Keyl, Philipp
    Jurmeister, Philipp
    Bockmayr, Michael
    Mock, Andreas
    Buchstab, Oliver
    Alber, Maximilian
    Ruff, Lukas
    Montavon, Gregoire
    Mueller, Klaus-Robert
    PATHOLOGIE, 2024, : 133 - 139
  • [27] Explainable and responsible artificial intelligence
    Christian Meske
    Babak Abedin
    Mathias Klier
    Fethi Rabhi
    Electronic Markets, 2022, 32 : 2103 - 2106
  • [28] Explainable Artificial Intelligence in education
    Khosravi H.
    Shum S.B.
    Chen G.
    Conati C.
    Tsai Y.-S.
    Kay J.
    Knight S.
    Martinez-Maldonado R.
    Sadiq S.
    Gašević D.
    Computers and Education: Artificial Intelligence, 2022, 3
  • [29] On the Need of an Explainable Artificial Intelligence
    Zanni-Merk, Cecilia
    INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2019, PT I, 2020, 1050 : 3 - 3
  • [30] Explainable Artificial Intelligence for Cybersecurity
    Sharma, Deepak Kumar
    Mishra, Jahanavi
    Singh, Aeshit
    Govil, Raghav
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103