Assessing the limits of local ancestry inference from small reference panels

被引:0
|
作者
Oliveira, Sandra [1 ,2 ]
Marchi, Nina [1 ,2 ,3 ]
Excoffier, Laurent [1 ,2 ]
机构
[1] Univ Bern, Inst Ecol & Evolut, CMPG, CH-3012 Bern, Switzerland
[2] Swiss Inst Bioinformat, Lausanne, Switzerland
[3] Univ Paris Cite, UMR7206 Ecoanthropol, CNRS MNHN, Paris, France
基金
瑞士国家科学基金会;
关键词
admixture; local ancestry inference; MOSAIC; RFMix; simpLAI;
D O I
10.1111/1755-0998.13981
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Admixture is a common biological phenomenon among populations of the same or different species. Identifying admixed tracts within individual genomes can provide valuable information to date admixture events, reconstruct ancestry-specific demographic histories, or detect adaptive introgression, genetic incompatibilities, as well as regions of the genomes affected by (associative-) overdominance. Although many local ancestry inference (LAI) methods have been developed in the last decade, their performance was accessed using large reference panels, which are rarely available for non-model organisms or ancient samples. Moreover, the demographic conditions for which LAI becomes unreliable have not been explicitly outlined. Here, we identify the demographic conditions for which local ancestries can be best estimated using very small reference panels. Furthermore, we compare the performance of two LAI methods (RFMix and MOSAIC) with the performance of a newly developed approach (simpLAI) that can be used even when reference populations consist of single individuals. Based on simulations of various demographic models, we also determine the limits of these LAI tools and propose post-painting filtering steps to reduce false-positive rates and improve the precision and accuracy of the inferred admixed tracts. Besides providing a guide for using LAI, our work shows that reasonable inferences can be obtained from a single diploid genome per reference under demographic conditions that are not uncommon among past human groups and non-model organisms.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Versatile simulations of admixture and accurate local ancestry inference with mixnmatch and ancestryinfer
    Schumer, Molly
    Powell, Daniel L.
    Corbett-Detig, Russ
    MOLECULAR ECOLOGY RESOURCES, 2020, 20 (04) : 1141 - 1151
  • [32] LAI-NET: LOCAL-ANCESTRY INFERENCE WITH NEURAL NETWORKS
    Montserrat, Daniel Mas
    Bustamante, Carlos
    Ioannidis, Alexander
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1314 - 1318
  • [33] MARKER PANELS FOR GENEALOGY-BASED MAPPING, BREED DEMOGRAPHICS, AND INFERENCE-OF-ANCESTRY IN THE DOG
    Wong, Aaron K.
    Ruhe, Alison L.
    Biswas, Shameek
    Robertson, Kathryn R.
    Ali, Ammar
    Akey, Joshua M.
    Neff, Mark W.
    ANIMAL BIOTECHNOLOGY, 2012, 23 (04) : 241 - 252
  • [34] Use of weighted reference panels based on empirical estimates of ancestry for capturing untyped variation
    Egyud, Matthew R. L.
    Gajdos, Zofia K. Z.
    Butler, Johannah L.
    Tischfield, Sam
    Le Marchand, Loic
    Kolonel, Laurence N.
    Haiman, Christopher A.
    Henderson, Brian E.
    Hirschhorn, Joel N.
    HUMAN GENETICS, 2009, 125 (03) : 295 - 303
  • [35] Use of weighted reference panels based on empirical estimates of ancestry for capturing untyped variation
    Matthew R. L. Egyud
    Zofia K. Z. Gajdos
    Johannah L. Butler
    Sam Tischfield
    Loic Le Marchand
    Laurence N. Kolonel
    Christopher A. Haiman
    Brian E. Henderson
    Joel N. Hirschhorn
    Human Genetics, 2009, 125 : 295 - 303
  • [36] Assessing the impact of global versus local ancestry in association studies
    Sun Jung Kang
    Emma K Larkin
    Yeunjoo Song
    Jill Barnholtz-Sloan
    Dan Baechle
    Tao Feng
    Xiaofeng Zhu
    BMC Proceedings, 3 (Suppl 7)
  • [37] Limits on inference of Mars small-scale topography from MOLA data
    Campbell, BA
    Ghent, RR
    Shepard, MK
    GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (03)
  • [38] A verified genomic reference sample for assessing performance of cancer panels detecting small variants of low allele frequency
    Jones, Wendell
    Gong, Binsheng
    Novoradovskaya, Natalia
    Li, Dan
    Kusko, Rebecca
    Richmond, Todd A.
    Johann, Donald J., Jr.
    Bisgin, Halil
    Sahraeian, Sayed Mohammad Ebrahim
    Bushel, Pierre R.
    Pirooznia, Mehdi
    Wilkins, Katherine
    Chierici, Marco
    Bao, Wenjun
    Basehore, Lee Scott
    Lucas, Anne Bergstrom
    Burgess, Daniel
    Butler, Daniel J.
    Cawley, Simon
    Chang, Chia-Jung
    Chen, Guangchun
    Chen, Tao
    Chen, Yun-Ching
    Craig, Daniel J.
    Del Pozo, Angela
    Foox, Jonathan
    Francescatto, Margherita
    Fu, Yutao
    Furlanello, Cesare
    Giorda, Kristina
    Grist, Kira P.
    Guan, Meijian
    Hao, Yingyi
    Happe, Scott
    Hariani, Gunjan
    Haseley, Nathan
    Jasper, Jeff
    Jurman, Giuseppe
    Kreil, David Philip
    Labaj, Pawel
    Lai, Kevin
    Li, Jianying
    Li, Quan-Zhen
    Li, Yulong
    Li, Zhiguang
    Liu, Zhichao
    Lopez, Mario Solis
    Miclaus, Kelci
    Miller, Raymond
    Mittal, Vinay K.
    GENOME BIOLOGY, 2021, 22 (01)
  • [39] Joint inference of ancestry and genotypes of parents from children
    Zhang, Yiming
    Wu, Yufeng
    ISCIENCE, 2022, 25 (08)
  • [40] A verified genomic reference sample for assessing performance of cancer panels detecting small variants of low allele frequency
    Wendell Jones
    Binsheng Gong
    Natalia Novoradovskaya
    Dan Li
    Rebecca Kusko
    Todd A. Richmond
    Donald J. Johann
    Halil Bisgin
    Sayed Mohammad Ebrahim Sahraeian
    Pierre R. Bushel
    Mehdi Pirooznia
    Katherine Wilkins
    Marco Chierici
    Wenjun Bao
    Lee Scott Basehore
    Anne Bergstrom Lucas
    Daniel Burgess
    Daniel J. Butler
    Simon Cawley
    Chia-Jung Chang
    Guangchun Chen
    Tao Chen
    Yun-Ching Chen
    Daniel J. Craig
    Angela del Pozo
    Jonathan Foox
    Margherita Francescatto
    Yutao Fu
    Cesare Furlanello
    Kristina Giorda
    Kira P. Grist
    Meijian Guan
    Yingyi Hao
    Scott Happe
    Gunjan Hariani
    Nathan Haseley
    Jeff Jasper
    Giuseppe Jurman
    David Philip Kreil
    Paweł Łabaj
    Kevin Lai
    Jianying Li
    Quan-Zhen Li
    Yulong Li
    Zhiguang Li
    Zhichao Liu
    Mario Solís López
    Kelci Miclaus
    Raymond Miller
    Vinay K. Mittal
    Genome Biology, 22