Microstructure and mechanical properties of microwave sintered (MgCoNiCuZn)O high-entropy ceramics

被引:6
|
作者
Song, Bozhen [1 ]
Dong, Wenzhe [1 ]
Guan, Li [1 ]
Lou, Yuanzheng [2 ]
Zhu, Yujie [1 ]
Zhang, Jiaxin [1 ]
Fan, Lei [1 ]
Guo, Xiaoqin [1 ]
Shao, Gang [2 ]
Zhang, Rui [1 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Mat Sci & Engn, Henan Key Lab Aeronaut Mat & Applicat Technol, Zhengzhou 450046, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy ceramics; Single-phase; Microwave sintering; Microscopic morphology; Impedance matching; RARE-EARTH; MECHANOCHEMICAL SYNTHESIS; HYDROXYAPATITE CERAMICS; OXIDE; DENSIFICATION; STRENGTH; BEHAVIOR; ALUMINA; ALLOYS;
D O I
10.1016/j.ceramint.2024.01.202
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructure, reaction mechanism and mechanical properties of (MgCoNiCuZn)O high-entropy ceramics prepared by microwave sintering technology were studied. Single -phase (MgCoNiCuZn)O high-entropy ceramics can be prepared in about 1 h when the preforming pressure is 5 MPa and the temperature is higher than 900 degrees C. By analyzing the microscopic morphology and density, it can be known that the density gradually increases with the increase of temperature. When the temperature is higher than 1000 degrees C, the pores in the sample indicate the packing, agglomeration and segregation of Cu2+ atoms at the grain boundaries. When the mass of the raw material is 20 g, it exhibits a good impedance matching effect during microwave heating. The sintered (MgCoNiCuZn)O ceramic with a density of 92.87 %, a flexural strength of 290 +/- 20 MPa, an elastic modulus of 187.05 +/- 5 GPa, and a microhardness of about 7 GPa.
引用
收藏
页码:22232 / 22242
页数:11
相关论文
共 50 条
  • [21] Preparation and Mechanical Properties of High-Entropy Ceramics (TiZrHfNbTa)C
    Vedel, D. V.
    Mazur, P. V.
    Grigoriev, O. M.
    Melakh, L. M.
    Bega, M. D.
    Kozak, I. V.
    JOURNAL OF SUPERHARD MATERIALS, 2022, 44 (05) : 323 - 330
  • [22] Effects of boron on microstructure and properties of microwave sintered FeCoNi1.5CuY0.2 high-entropy alloy
    Li Guirong
    Gao Lipeng
    Wang Hongming
    Liu Ming
    Wang Changwen
    Wen Haoran
    Yan Yuwei
    Ren Wenxiang
    Liu Jiaqi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 866
  • [23] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    QU HuaiZhi
    GONG MingLong
    LIU FengFang
    GAO BingYu
    BAI Jing
    GAO QiuZhi
    LI Song
    Science China(Technological Sciences), 2020, (03) : 459 - 466
  • [24] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    HuaiZhi Qu
    MingLong Gong
    FengFang Liu
    BingYu Gao
    Jing Bai
    QiuZhi Gao
    Song Li
    Science China Technological Sciences, 2020, 63 : 459 - 466
  • [25] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    Qu, HuaiZhi
    Gong, MingLong
    Liu, FengFang
    Gao, BingYu
    Bai, Jing
    Gao, QiuZhi
    Li, Song
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (03) : 459 - 466
  • [26] High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties
    Sathiyamoorthi, Praveen
    Kim, Hyoung Seop
    PROGRESS IN MATERIALS SCIENCE, 2022, 123
  • [27] Microstructure and properties of AlCoCrNiFe high-entropy alloy sintered by hot oscillating pressing
    Gao, Ka
    Liu, Dongyue
    Sun, Dejian
    Gao, Yang
    Wang, Zhaohui
    An, Linan
    INTERMETALLICS, 2023, 154
  • [28] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Shabani, Ali
    Toroghinejad, Mohammad Reza
    Shafyei, Ali
    Loge, Roland E.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (04) : 2388 - 2398
  • [29] Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy
    Ali Shabani
    Mohammad Reza Toroghinejad
    Ali Shafyei
    Roland E. Logé
    Journal of Materials Engineering and Performance, 2019, 28 : 2388 - 2398
  • [30] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Mina Zhang
    Xianglin Zhou
    Jinghao Li
    Journal of Materials Engineering and Performance, 2017, 26 : 3657 - 3665