Coupling of ion-conducting interphase with lithiophilic-solid-oxide-electrolyte interlayer toward fast-charging lithium metal batteries

被引:7
|
作者
Chen, Zongyuan [1 ]
Wang, Shengxian [1 ]
Wei, Fengkun [1 ]
Zhai, Yanfang [1 ]
Hu, Ning [2 ,3 ]
Song, Shufeng [1 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equipm, Key Lab Adv Intelligent Protect Equipment Technol, Minist Educ, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Sch Mech Engn, Tianjin 300401, Peoples R China
关键词
Interphase; Interlayer; Solid electrolyte; Lithium metal batteries; Fast charging; HIGH-ENERGY; WASTE-WATER; ANODE; LI7LA3ZR2O12; EFFICIENCY; STABILITY; BEHAVIOR; LAYER; ACID;
D O I
10.1016/j.cej.2024.152611
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The uncontrollable dendritic Li growth and limited Coulombic efficiency have long impeded the implementation of fast -charging lithium metal batteries. Contrary to the widely accepted attempt of using a sintering dense ceramic electrolyte to realize dendrite -free deposition, we report a coupling architecture of ion-conductingLi3PO4-Li3N interphase with lithiophilic-solid-oxide-electrolyte interlayer for Li -metal anode using a reactive lithiophilic solid oxide electrolyte (RLSE) rather than dense ceramics. The synergistic interphase and protection layer can facilitate the Li -ion transport and enhance the lithiophilicity. As a result, an ultrahigh Li plating/ stripping current density of 10 mA cm -2 and areal capacity of 10 mAh cm -2 for over 1000 h, and a remarkable Coulombic efficiency of 99.8 % are achieved simultaneously. Moreover, the use of interphase-interlayer synergistic protection enables a stable long-term 3000 -cycling of Li||Li4Ti5O12 cell at 2C rate. More importantly, highcurrent-density (e.g. 1.8 mA cm -2) cycling of Li||LiNi0.8Co0.1Mn0.1O2 batteries with a practical area capacity of 3.6 mAh cm -2 is achieved in both carbonate and quasi -solid electrolytes. This study demonstrates an alternative approach of solid oxide electrolytes to stabilize Li -metal anode and enable fast -charging lithium metal batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Double-edged effects of electrolyte additive on interfacial stability in fast-charging lithium-ion batteries
    Lee, Hyuntae
    Doh, Junyoung
    Lee, Soyeon
    Sung, Dohyun
    Kim, Hang
    Chae, Sujong
    Lee, Hongkyung
    CHEMICAL COMMUNICATIONS, 2024, 60 (89) : 13044 - 13047
  • [42] Improving Fast-Charging Performance of Lithium-Ion Batteries through Electrode-Electrolyte Interfacial Engineering
    Kim, Seungwon
    Park, Sewon
    Kim, Minjee
    Cho, Yoonhan
    Kang, Gumin
    Ko, Sunghyun
    Yoon, Daebong
    Hong, Seungbum
    Choi, Nam-Soon
    ADVANCED SCIENCE, 2024,
  • [43] A multi-functional electrolyte additive for fast-charging and flame-retardant lithium-ion batteries
    Long, Jing
    Huang, Jiafang
    Miao, Yuhui
    Huang, Huiting
    Chen, Xiaochuan
    Wu, Junxiong
    Li, Xiaoyan
    Chen, Yuming
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (28) : 17306 - 17314
  • [44] Interdigitated cathode-electrolyte architectural design for fast-charging lithium metal battery with lithium oxyhalide solid-state electrolyte
    Numan-Al-Mobin, Abu Md
    Schmidt, Ben
    Lannerd, Armand
    Viste, Mark
    Qiao, Quinn
    Smirnova, Alevtina
    MATERIALS ADVANCES, 2022, 3 (24): : 8947 - 8957
  • [45] Amorphous Vanadium Oxide Nanosheets with Alterable Polyhedron Configuration for Fast-Charging Lithium-Ion Batteries
    Wu, Bei
    Niu, Shuwen
    Wang, Chao
    Wu, Geng
    Zhang, Yida
    Han, Xiao
    Liu, Peigen
    Lin, Yue
    Yan, Wensheng
    Wang, Gongming
    Hong, Xun
    SMALL, 2023, 19 (43)
  • [46] Tailoring solid-electrolyte interphase and solvation structure for subzero temperature, fast-charging, and long-cycle-life sodium-ion batteries
    Tao, Lei
    Sittisomwong, Poom
    Ma, Bingyuan
    Hu, Anyang
    Xia, Dawei
    Hwang, Sooyeon
    Huang, Haibo
    Bai, Peng
    Lin, Feng
    ENERGY STORAGE MATERIALS, 2023, 55 : 826 - 835
  • [47] Coordination Regulation Enabling Deep Eutectic Electrolyte for Fast-Charging High-Voltage Lithium Metal Batteries
    Ding, Peipei
    Yuan, Haocheng
    Xu, Ligang
    Wu, Lingqiao
    Du, Haozhe
    Zhao, Shu
    Yu, Dengfeng
    Qin, Zuoyu
    Liu, Hong
    Li, Yue
    Zhang, Xu
    Yu, Haijun
    Tang, Mingxue
    Ren, Yaoyu
    Li, Liangliang
    Nan, Ce-Wen
    ADVANCED MATERIALS, 2025, 37 (06)
  • [48] The Origin of Fast Lithium-Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes
    Ma, Xia-Xia
    Shen, Xin
    Chen, Xiang
    Fu, Zhong-Heng
    Yao, Nan
    Zhang, Rui
    Zhang, Qiang
    SMALL STRUCTURES, 2022, 3 (08):
  • [49] Highly safe lithium vanadium oxide anode for fast-charging dendrite-free lithium-ion batteries
    Zhang, Hao
    Lin, Wenhui
    Kang, Le
    Zhang, Yi
    Zhou, Yunlei
    Jiang, Shan
    NANOTECHNOLOGY REVIEWS, 2024, 13 (01)
  • [50] Interfacial modification by lithiophilic oxide facilitating uniform and thin solid electrolyte interphase towards stable lithium metal anodes
    Lu, L. Q.
    Pei, Y. T.
    MATERIALS TODAY ENERGY, 2021, 21