Quantum-enhanced electrometer based on microwave-dressed Rydberg atoms

被引:2
|
作者
Wu, Shuhe [1 ,2 ,3 ]
Zhang, Dong [1 ,2 ,3 ]
Li, Zhengchun [1 ,2 ,3 ]
Shi, Minwei [1 ,2 ,3 ]
Yang, Peiyu [1 ,2 ,3 ]
Guo, Jinxian [1 ,2 ,3 ]
Du, Wei [1 ,2 ,3 ]
Bao, Guzhi [1 ,2 ,3 ]
Zhang, Weiping [1 ,2 ,3 ,4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai 200240, Peoples R China
[3] Hefei Natl Lab, Shanghai Branch, Shanghai 201315, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[5] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2023年 / 20卷 / 06期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1103/PhysRevApplied.20.064028
中图分类号
O59 [应用物理学];
学科分类号
摘要
Rydberg atoms have shown remarkable performance in sensing microwave fields. The sensitivity of such an electrometer based on optical readout of the atomic ensemble has been demonstrated to approach the photon-shot-noise limit. However, the sensitivity cannot be promoted infinitely by increasing the power of the probe light due to the increased collision rates and power broadening. Compared with classical light, the use of quantum light may lead to a better sensitivity with a lower number of photons. In this paper, we exploit entanglement in a microwave-dressed Rydberg electrometer to suppress the fluctuation of noise. The results show a sensitivity enhancement that beats the shot-noise limit in both cold- and hotatom schemes. Through optimizing the transmission of the optical readout, our quantum advantage can be maintained with differing absorptive indexes of the atomic vapor, which makes it possible to apply a quantum light source in the absorptive electrometer.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Strongly Correlated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynamics
    Pupillo, G.
    Micheli, A.
    Boninsegni, M.
    Lesanovsky, I.
    Zoller, P.
    PHYSICAL REVIEW LETTERS, 2010, 104 (22)
  • [22] Enhanced microwave electrometry with intracavity anomalous dispersion in Rydberg atoms
    Y. D. Peng
    J. L. Wang
    C. Li
    X. Lu
    Y. H. Qi
    A. H. Yang
    J. Y. Wang
    Optical and Quantum Electronics, 2020, 52
  • [23] Enhanced microwave metrology using an optical grating in Rydberg atoms
    Zhao, Shengfang
    Yin, Zheng
    Song, Xiaoyun
    Jia, Zhengmao
    Wang, Leqiu
    Chen, Bing
    Zeng, Qingtian
    Peng, Yandong
    APPLIED OPTICS, 2023, 62 (14) : 3747 - 3752
  • [24] Enhanced microwave electrometry with intracavity anomalous dispersion in Rydberg atoms
    Peng, Y. D.
    Wang, J. L.
    Li, C.
    Lu, X.
    Qi, Y. H.
    Yang, A. H.
    Wang, J. Y.
    OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (02)
  • [25] Quantum-Enhanced Heat Engine Based on Superabsorption
    Kamimura, Shunsuke
    Hakoshima, Hideaki
    Matsuzaki, Yuichiro
    Yoshida, Kyo
    Tokura, Yasuhiro
    PHYSICAL REVIEW LETTERS, 2022, 128 (18)
  • [26] Few-Body Analog Quantum Simulation with Rydberg-Dressed Atoms in Optical Lattices
    Malz, Daniel
    Cirac, J. Ignacio
    PRX QUANTUM, 2023, 4 (02):
  • [27] Quantum-enhanced metal target detection based on quantum illumination
    Li Lifei
    Yan, Kang
    Biao, Wang
    Wu Yangcao
    Zhang Tongyi
    ELEVENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2019), 2019, 11209
  • [28] Doppler-enhanced quantum magnetometry with thermal Rydberg atoms
    Barik, Shovan Kanti
    Silpa, B. S.
    Ramana, M. Venkat
    Dutta, Shovan
    Roy, Sanjukta
    NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [29] Quantum suppression of microwave ionization of Rydberg atoms at high scaled frequency
    Maeda, H
    Gallagher, TF
    PHYSICAL REVIEW LETTERS, 2004, 93 (19) : 193002 - 1
  • [30] Improvement of microwave electric field measurement sensitivity via dual-microwave-dressed electromagnetically induced transparency in Rydberg atoms
    Yuan, Jinpeng
    Jin, Ting
    Wang, Lirong
    Xiao, Liantuan
    Jia, Suotang
    LASER PHYSICS LETTERS, 2022, 19 (12)