Assessing Rheology Effects and Pore Space Complexity in Polymer Flow Through Porous Media: A Pore-Scale Simulation Study

被引:0
|
作者
Amiri, Mehdi [1 ]
Qajar, Jafar [1 ,2 ,3 ]
Raeini, Ali Q. [4 ]
Raoof, Amir [2 ]
机构
[1] Shiraz Univ, Sch Chem & Petr Engn, Dept Petr Engn, Shiraz, Iran
[2] Univ Utrecht, Fac Geosci, Dept Earth Sci, Utrecht, Netherlands
[3] Shiraz Univ, IOR EOR Res Inst, Digital Rock Phys Res Grp, Shiraz, Iran
[4] Imperial Coll London, Dept Earth Sci & Engn, London, England
关键词
pore-scale flow simulation; non-Newtonian flow; porous medium viscosity; shift factor; flow behavior index; pore space; SHEAR THINNING FLUID; NON-NEWTONIAN FLOW; POWER-LAW FLUIDS; YIELD-STRESS; 2-PHASE FLOW; PACKED-BEDS; VOLUME; MODEL; DELIVERY; ADSORPTION;
D O I
10.1029/2023WR036125
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Non-Newtonian fluid flow within porous media, exemplified by polymer remediation of contaminated groundwater/aquifer systems, presents complex challenges due to the fluids' complex rheological behavior within 3D tortuous pore structures. This paper introduces a pore-scale flow simulator based on the OpenFOAM open-source library, designed to model shear-thinning flow within porous media. Leveraging this developed solver, extensive pore-scale flow simulations were conducted on mu-CT images of various real and synthetic porous media with varying complexity for both power-law and Cross-fluid models. We focused on the macroscale-averaged deviation between bulk viscosity and the in-situ viscosity, commonly denoted by a shift factor. We provided an in-depth evaluation of the shift factor's dependency on the fluid's rheological attributes and the rock's pore space complexity. The least-squares fitted values of the shift factor fell in the range of 1.6-9.5. Notably, the most pronounced shift factor emerged for extreme flow behavior indices. Our findings highlight not just the critical role of rheological parameters, but also demonstrate how the shift factor fluctuates based on tortuosity, characteristic pore length, and the cementation exponent. In particular, less porous/permeable systems with smaller characteristic pore lengths exhibited larger shift factors due to higher variations of shear rate and local viscosity in narrower flow paths. Additionally, the shift factor increased as rock became more tortuous and heterogeneous. The introduced pore-scale simulation proves instrumental in determining the macroscopic averaged shift factor. This, in consequence, is vital for precise computations of viscosity and pressure drop when dealing with non-Newtonian fluid flow in porous media. The pore-scale flow simulation allowed an accurate evaluation of macroscopic deviation between bulk viscosity and the in-situ viscosity The fluid's rheology exhibited stronger impacts on the dynamics of non-Newtonian flow in porous media than pore structure descriptors The porous medium viscosity decreased by increasing the complexity of the pore space of the rock
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Pore-scale modeling of multiphase flow through porous media under triaxial stress
    Fagbemi, Samuel
    Tahmasebi, Pejman
    Piri, Mohammad
    ADVANCES IN WATER RESOURCES, 2018, 122 : 206 - 216
  • [22] Lattice Boltzmann modeling of pore-scale fluid flow through idealized porous media
    Han, Yanhui
    Cundall, Peter A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (11) : 1720 - 1734
  • [23] Anomalous transport through free-flow-porous media interface: Pore-scale simulation and predictive modeling
    Kim, Jun Song
    Kang, Peter K.
    ADVANCES IN WATER RESOURCES, 2020, 135
  • [24] Effects of microfracture parameters on adaptive pumping in fractured porous media: Pore-scale simulation
    Liang, Fachun
    He, Zhennan
    Meng, Jia
    Zhao, Jingwen
    Yu, Chao
    ENERGY, 2023, 263
  • [25] Pore-scale study on the effect of heterogeneity on evaporation in porous media
    Fei, Linlin
    Derome, Dominique
    Carmeliet, Jan
    JOURNAL OF FLUID MECHANICS, 2024, 983
  • [26] Pore-Scale Simulation of Drying of a Porous Media Saturated with a Sucrose Solution
    SanMartin, Francisco A.
    Laurindo, Joao B.
    Segura, Luis A.
    DRYING TECHNOLOGY, 2011, 29 (08) : 873 - 887
  • [27] Direct Numerical Simulation of Pore-scale Unidirectional Plow in Porous Media
    Niyazbek, Muheyat
    Talp, Kuenssaule
    Kudaikulov, A. A.
    2017 3RD INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND MATERIALS SCIENCE (EEMS 2017), 2017, 94
  • [28] Pore-scale simulation of adaptive pumping remediation in heterogeneous porous media
    He, Zhennan
    Liang, Fachun
    Meng, Jia
    Wang, Hongyu
    PHYSICS OF FLUIDS, 2022, 34 (02)
  • [29] Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation
    Mahabadi, Nariman
    Zheng, Xianglei
    Yun, Tae Sup
    van Paassen, Leon
    Jang, Jaewon
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (02) : 1060 - 1071
  • [30] Pore-scale direct numerical simulation of particle transport in porous media
    Su, Junwei
    Chai, Guoliang
    Wang, Le
    Cao, Weidong
    Gu, Zhaolin
    Chen, Chungang
    Xu, Xiao Yun
    CHEMICAL ENGINEERING SCIENCE, 2019, 199 : 613 - 627