γ-Oryzanol Loaded Hyaluronic Acid Hydrogel Alleviates The Loss of Motor Function After Spinal Cord Injury in Mice by Inhibiting Endoplasmic Reticulum Stress

被引:0
|
作者
Fan, Zhiyi [1 ]
Zhan, Wanda [1 ]
Su, Xing [2 ,3 ]
Xing, Qiqiang [1 ]
Yao, Xuan [4 ]
Cai, Jun [1 ]
机构
[1] Yangzhou Univ, Clin Med Coll, Yangzhou 225000, Jiangsu, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Inst Hematol, Natl Clin Res Ctr Blood Dis, State Key Lab Expt Hematol,Haihe Lab Cell Ecosyst, Tianjin 300020, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Blood Dis Hosp, Tianjin 300020, Peoples R China
[4] Third Mil Med Univ, Dept Clin Hematol, Army Med Univ, Fac Lab Med, Chongqing 400038, Peoples R China
关键词
gamma-Oryzanol; hyaluronic acid; spinal cord injury; endoplasmic reticulum stress; hydrogel; PATHOLOGY; OUTCOMES; RAT;
D O I
10.3923/ijp.2024.257.268
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background and Objective: Spinal cord injury (SCI) is typically the result of compressive forces on spinal cord tissue, leading to loss of motor or sensory function. As a cheap and biocompatible substance,gamma-Oryzanol has been shown to cross the blood-brain barrier and exert beneficial effects on neural tissue. Our Previous studies have demonstrated the potential of a hydrogel based on the cross-linking of oxidized hyaluronic acid (OHA) and Hyaluronic Acid-Adipic Dihydrazide (HA-ADH) for treating osteoarthritis by loading Selenium Nanoparticles (SeNPs) through a Schiff base reaction. This study investigated the use of this hydrogel loaded with gamma-Oryzanol to treat SCI in mice. Materials and Methods: Synthesize the hydrogel according to the previous method and load the appropriate concentration of gamma-Oryzanol. Mice were randomly divided into groups and treated accordingly. Within 6 weeks after surgery, we used multiple methods including Basso mouse scale (BMS) score to conduct behavioral tests and analyzed the lesion area by Hematoxylin and Eosin (H&E) staining and immunofluorescence staining. Results: The study showed that mice treated with gamma-Oryzanol showed better motor function. Observation of the lesion area showed that the inflammatory and demyelinating conditions of the injury site in the mice treated with gamma-Oryzanol improved and more axons related to motor function were preserved with less scar formation. Endoplasmic reticulum stress-related proteins in the spinal cord tissue of gamma-Oryzanol-treated mice decrease. Conclusion: Although further research is warranted, we propose that gamma-Oryzanol, as a relatively inexpensive dietary phytochemical, has potential clinical value.
引用
收藏
页码:257 / 268
页数:12
相关论文
共 50 条
  • [21] Ursolic acid alleviates heat stress-induced lung injury by regulating endoplasmic reticulum stress signaling in mice
    Yang, Ying
    Li, Changwu
    Liu, Ning
    Wang, Mengmeng
    Zhou, Xiumin
    Kim, In Ho
    Wu, Zhenlong
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2021, 89
  • [22] Chloroquine Promotes the Recovery of Acute Spinal Cord Injury by Inhibiting Autophagy-Associated Inflammation and Endoplasmic Reticulum Stress
    Wu, Fenzan
    Wei, Xiaojie
    Wu, Yanqing
    Kong, Xiaoxia
    Hu, Aiping
    Tong, Songlin
    Liu, Yanlong
    Gong, Fanhua
    Xie, Ling
    Zhang, Jinjing
    Xiao, Jian
    Zhang, Hongyu
    JOURNAL OF NEUROTRAUMA, 2018, 35 (12) : 1329 - 1344
  • [23] Hyaluronic acid methacryloyl hydrogel with sustained IL-10 release promotes macrophage M2 polarization and motor function after spinal cord injury
    Wang, Zhihua
    Li, Denghui
    Wang, Yanghao
    Yuan, Ping
    Zhang, Wan
    Zhang, Yihe
    He, Fei
    Yang, Jianyi
    Bi, Hangchuan
    Duan, Hao
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2025,
  • [24] The cross-talk between autophagy and endoplasmic reticulum stress in blood-spinal cord barrier disruption after spinal cord injury
    Zhou, Yulong
    Wu, Yanqing
    Liu, Yanlong
    He, Zili
    Zou, Shuang
    Wang, Qingqing
    Li, Jiawei
    Zheng, Zengming
    Chen, Jian
    Wu, Fenzan
    Gong, Fanhua
    Zhang, Hongyu
    Xu, Huazi
    Xiao, Jian
    ONCOTARGET, 2017, 8 (01) : 1688 - 1702
  • [25] Catalpol as a Component of Rehmannia glutinosa Protects Spinal Cord Injury by Inhibiting Endoplasmic Reticulum Stress-Mediated Neuronal Apoptosis
    Huang, Zhiyang
    Gong, Jiahong
    Lin, Wen
    Feng, Zhiyi
    Ma, Yirou
    Tu, Yurong
    Cai, Xiong
    Liu, Jianhua
    Lv, Chang
    Lv, Xinru
    Wu, Qiuji
    Lu, Wenjie
    Zhao, Juan
    Ying, Yibo
    Li, Shengcun
    Ni, Wenfei
    Chen, Haili
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [26] Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury
    Zheng, Binbin
    Zhou, Yulong
    Zhang, Hongyu
    Yang, Guangyong
    Hong, Zhenghua
    Han, Dandan
    Wang, Qingqing
    He, Zili
    Liu, Yanlong
    Wu, Fenzan
    Zhang, Xie
    Tong, Songlin
    Xu, Huazi
    Xiao, Jian
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2017, 13 (12): : 1520 - 1531
  • [27] Tauroursodeoxycholic acid alleviates secondary injury in spinal cord injury mice by reducing oxidative stress, apoptosis, and inflammatory response
    Yonghui Hou
    Jiyao Luan
    Taida Huang
    Tiancheng Deng
    Xing Li
    Zhifeng Xiao
    Jiheng Zhan
    Dan Luo
    Yu Hou
    Liangliang Xu
    Dingkun Lin
    Journal of Neuroinflammation, 18
  • [28] Tauroursodeoxycholic acid alleviates secondary injury in spinal cord injury mice by reducing oxidative stress, apoptosis, and inflammatory response
    Hou, Yonghui
    Luan, Jiyao
    Huang, Taida
    Deng, Tiancheng
    Li, Xing
    Xiao, Zhifeng
    Zhan, Jiheng
    Luo, Dan
    Hou, Yu
    Xu, Liangliang
    Lin, Dingkun
    JOURNAL OF NEUROINFLAMMATION, 2021, 18 (01)
  • [29] Endoplasmic reticulum stress transducer old astrocyte specifically induced substance contributes to astrogliosis after spinal cord injury
    Atsushi Takazawa
    Naosuke Kamei
    Nobuo Adachi
    Mitsuo Ochi
    NeuralRegenerationResearch, 2018, 13 (03) : 536 - 540
  • [30] Endoplasmic reticulum stress transducer old astrocyte specifically induced substance contributes to astrogliosis after spinal cord injury
    Takazawa, Atsushi
    Kamei, Naosuke
    Adachi, Nobuo
    Ochi, Mitsuo
    NEURAL REGENERATION RESEARCH, 2018, 13 (03) : 536 - 540