ELECTRON-BEAM SINTERING OF ZIRCONIUM DIOXIDE/TITANIUM CERAMICS FOR MICROELECTRONICS PRODUCTS

被引:0
|
作者
Klimov, A. S. [1 ]
Bakeev, I. Yu. [1 ]
Dolgova, A. V. [1 ]
Kokolov, A. A. [2 ]
Oks, E. M. [1 ,3 ]
Zenin, A. A. [1 ]
机构
[1] Tomsk State Univ Control Syst & Radioelect, Lab Plasma Elect, Tomsk 634050, Russia
[2] Tomsk State Univ Control Syst & Radioelect, Lab Design RF IC & SoC, Tomsk 634050, Russia
[3] RAS, Inst High Current Elect SB, Lab Plasma Sources, Tomsk 634034, Russia
来源
HIGH TEMPERATURE MATERIAL PROCESSES | 2024年 / 28卷 / 03期
基金
俄罗斯科学基金会;
关键词
electron-beam sintering; ceramics; composite; forevacuum; elemental composition; porosity;
D O I
10.1615/HighTempMatProc.2023051535
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zirconium dioxide (ZrO2) has excellent physical, chemical, and mechanical properties. These properties make it an excellent material for composite ceramics. High values of dielectric permittivity, mechanical resistance, and high radiation resistance allow it to be used to protect integrated circuits (ICs) from external influences. In this study, we fabricated ZrO2/titanium (Ti) ceramic composites by employing electron-beam sintering and a forevacuum-pressure plasma-cathode electron-beam source. We used a scanning electron microscopy method to study the 0.properties of the ceramics after sintering. The results obtained showed that with an increase in the sintering temperature up to 1700 degrees C, the Ti content in the near-surface layer of the composite decreased to almost 0. The depth of the region with low metal component content also increased with an increase in the sintering temperature and reached 2 mm in 3-mm-thick samples. This method can be used in the production of composite materials used in IC packaging.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 50 条
  • [31] Crystallization of titanium ingots in the course of electron-beam melting
    B. E. Paton
    N. P. Trigub
    G. V. Zhuk
    Materials Science, 2008, 44 : 328 - 335
  • [32] Microstructure Analysis of Electron-Beam Brazed γ-Titanium Aluminide
    Reisgen, Uwe
    Olschok, Simon
    Backhaus, Alexander
    LIGHT METALS TECHNOLOGY V, 2011, 690 : 153 - 156
  • [33] Electron-beam deposition of vanadium dioxide thin films
    R. E. Marvel
    K. Appavoo
    B. K. Choi
    J. Nag
    R. F. Haglund
    Applied Physics A, 2013, 111 : 975 - 981
  • [34] PLASMA ELECTRON-BEAM MELTING OF TITANIUM-ALLOY
    TAKAHASHI, J
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1986, 72 (13): : 1629 - 1629
  • [35] Electron-beam deposition of vanadium dioxide thin films
    Marvel, R. E.
    Appavoo, K.
    Choi, B. K.
    Nag, J.
    Haglund, R. F., Jr.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 111 (03): : 975 - 981
  • [36] AMORPHOUS VANADIUM DIOXIDE: THE RESIST FOR ELECTRON-BEAM LITHOGRAPHY
    Stefanovich, Genrikh
    Velichko, Andrey
    Pergament, Alexander
    Boriskov, Peter
    SURFACE REVIEW AND LETTERS, 2018, 25 (06)
  • [37] Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials
    Selhofer, H
    Ritter, E
    Linsbod, R
    APPLIED OPTICS, 2002, 41 (04) : 756 - 762
  • [38] Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask
    Hashiba, Hideomi
    Miyazaki, Yuta
    Matsushita, Sachiko
    NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES X, 2013, 8816
  • [39] Effects of sintering temperature on the microstructure and dielectric properties of titanium dioxide ceramics
    Sheng Chao
    Vladimir Petrovsky
    Fatih Dogan
    Journal of Materials Science, 2010, 45 : 6685 - 6693
  • [40] Effects of sintering temperature on the microstructure and dielectric properties of titanium dioxide ceramics
    Chao, Sheng
    Petrovsky, Vladimir
    Dogan, Fatih
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (24) : 6685 - 6693