A traffic flow forecasting model using graph convolutional recurrent neural networks with incomplete data

被引:2
|
作者
Sun, Zhanbo [1 ]
Dai, Jin [1 ]
Zhao, Yu [1 ]
Zhang, Chao [2 ,3 ]
Ji, Ang [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Transportat & Logist, Chengdu, Sichuan, Peoples R China
[2] Intelligent Policing Key Lab Sichuan Prov, Luzhou, Sichuan, Peoples R China
[3] Sichuan Police Coll, Luzhou, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ITSC57777.2023.10422643
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow prediction is a fundamental problem for urban traffic control and management. In practice, incomplete data is a common challenge due to sparse sensor deployment, data loss, and hardware failure. In this paper, a graph convolution recurrent neural network is proposed for traffic flow prediction, with considerations of incomplete data. The missing data is complemented with node imputation using the Gaussians Mixture Model (GMM) and integrated into the initial layer of the graph convolution network. Then, we utilize the node parameter learning module to capture the features of individual nodes, and the node-embedding matrix is applied to balance the computational efficiency and model performance. In addition, we employ recurrent neural networks and Sequence to Sequence models to tackle the challenge of temporal dependence and multi-step prediction. The proposed approach is evaluated based on two real-world datasets, and the results show that the prediction accuracy can be improved by at least 12.5% and 18.6% compared to the imputation and inductive-based models.
引用
收藏
页码:4669 / 4675
页数:7
相关论文
共 50 条
  • [31] Gated Graph Convolutional Recurrent Neural Networks
    Ruiz, Luana
    Gama, Fernando
    Ribeiro, Alejandro
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [32] A Two-Stream Graph Convolutional Neural Network for Dynamic Traffic Flow Forecasting
    Li, Zhaoyang
    Li, Lin
    Peng, Yuquan
    Tao, Xiaohui
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 355 - 362
  • [33] FAST GRAPH CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Kadambari, Sai Kiran
    Chepuri, Sundeep Prabhakar
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 467 - 471
  • [34] Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1853 - 1862
  • [35] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Guo, Shengnan
    Lin, Youfang
    Feng, Ning
    Song, Chao
    Wan, Huaiyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 922 - 929
  • [36] Adaptive Spatial-Temporal Fusion Graph Convolutional Networks for Traffic Flow Forecasting
    Li, Senwen
    Ge, Liang
    Lin, Yongquan
    Zeng, Bo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [37] Internet Traffic Forecasting using Temporal-Topological Graph Convolutional Networks
    Yao, Zhenjie
    Xu, Qian
    Chen, Yongrui
    Tu, Yanhui
    Zhang, He
    Chen, Yixin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [38] Dynamic Spatial-Temporal Perception Graph Convolutional Networks for Traffic Flow Forecasting
    Cao, Jingsi
    Liu, Weibin
    Xing, Weiwei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 347 - 360
  • [39] GCRINT: Network Traffic Imputation Using Graph Convolutional Recurrent Neural Network
    Van An Le
    Tien Thanh Le
    Phi Le Nguyen
    Huynh Thi Thanh Binh
    Akerkar, Rajendra
    Ji, Yusheng
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [40] Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting
    Li, Mengzhang
    Zhu, Zhanxing
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4189 - 4196