LightCapsGNN: light capsule graph neural network for graph classification

被引:0
|
作者
Yan, Yucheng [1 ]
Li, Jin [1 ]
Xu, Shuling [1 ]
Chen, Xinlong [1 ]
Liu, Genggeng [1 ]
Fu, Yang-Geng [1 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, 2 Xueyuan Rd,Univ Town, Fuzhou 350116, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural networks; Capsule networks; Routing;
D O I
10.1007/s10115-024-02170-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks (GNNs) have achieved excellent performances in many graph-related tasks. However, they need appropriate pooling operations to deal with the graph classification tasks, and thus, they may suffer from some limitations such as information loss and ignorance of the part-whole relationships. CapsGNN is proposed to solve the above-mentioned issues, but suffers from high time and space complexities leading to its poor scalability. In this paper, we propose a novel, effective and efficient graph capsule network called LightCapsGNN. First, we devise a fast voting mechanism (called LightVoting) implemented via linear combinations of K shared transformation matrices to reduce the number of trainable parameters in the voting procedure. Second, an improved reconstruction layer is proposed to encourage our model to capture more informative and essential knowledge of the input graph. Third, other improvements are combined to further accelerate our model, e.g., matrix capsules and a trainable routing mechanism. Finally, extensive experiments are conducted on the popular real-world graph benchmarks in the graph classification tasks and the proposed model can achieve competitive or even better performance compared to ten baselines or state-of-the-art models. Furthermore, compared to other CapsGNNs, the proposed model reduce almost 99%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99\%$$\end{document} learnable parameters and 31.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$31.1\%$$\end{document} running time.
引用
收藏
页码:6363 / 6386
页数:24
相关论文
共 50 条
  • [21] Research on Network Traffic Classification Based on Graph Neural Network
    University of Science and Technology Liaoning, Liaoning, Anshan
    114051, China
    不详
    IAENG Int. J. Comput. Sci., 2024, 12 (2043-2050):
  • [22] Semisupervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Liang, Yanfeng
    Gong, Maoguo
    Qin, A. K.
    Ong, Yew-Soon
    He, Tiantian
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6222 - 6235
  • [23] Learning Dual-Routing Capsule Graph Neural Network for Few-Shot Video Classification
    Feng, Yangbo
    Gao, Junyu
    Xu, Changsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3204 - 3216
  • [24] Hybrid neural network for classification of graph structured data
    R. B. Gnana Jothi
    S. M. Meena Rani
    International Journal of Machine Learning and Cybernetics, 2015, 6 : 465 - 474
  • [25] Text Level Graph Neural Network for Text Classification
    Huang, Lianzhe
    Ma, Dehong
    Li, Sujian
    Zhang, Xiaodong
    Wang, Houfeng
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 3444 - 3450
  • [26] Text Classification with Attention Gated Graph Neural Network
    Zhaoyang Deng
    Chenxiang Sun
    Guoqiang Zhong
    Yuxu Mao
    Cognitive Computation, 2022, 14 : 1464 - 1473
  • [27] Research on fabric classification based on graph neural network
    Tao, Peng
    Cao, Wenli
    Jia, Chen
    Lv, Xinghang
    Zhang, Zili
    Jiu, Junping
    Hu, Xinrong
    INDUSTRIA TEXTILA, 2023, 74 (01): : 3 - 11
  • [28] Heterogeneous Graph Neural Network for Short Text Classification
    Zhang, Bingjie
    He, Qing
    Zhang, Damin
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [29] Graph kernels combined with the neural network on protein classification
    Jiang Qiangrong
    Qiu Guang
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2019, 17 (05)
  • [30] Text Classification with Attention Gated Graph Neural Network
    Deng, Zhaoyang
    Sun, Chenxiang
    Zhong, Guoqiang
    Mao, Yuxu
    COGNITIVE COMPUTATION, 2022, 14 (04) : 1464 - 1473