An Iterative Reconstruction Network for Incomplete Projections of Static CT

被引:0
|
作者
Wang, Yukang [1 ]
Ma, Chunliang [1 ]
Zha, Keyang [1 ]
Li, Yunxiang [2 ]
Luo, Shouhua [1 ]
机构
[1] Southeast Univ, Sch Biol Sci & Med Engn, Nanjing 210096, Jiangsu, Peoples R China
[2] Nanovis Technol Beijing Co Ltd, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
cone beam reconstruction; static CT; directional TV; deep iterative network;
D O I
10.1117/12.3005978
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The static CT by Nanovision, as a new CT scanning formula, assembles a multi-source array and a ring detector array on two parallel planes with a fixed offset. The advantage of this configuration is that each source only needs to be rotated over a smaller angle range to complete a full scan than with conventional CT systems. However, the large cone angle from the source to the detector and the distribution of multiple sources lead to severe incomplete projections during the scanning process. To address this issue, this paper proposes a deep iterative network based on directional TV regularization. The network employs a tensorization module suitable for the static CT geometry in the forward and back-projection steps, and the regularization term adopts a directional TV deep learning model, which enables end-to-end reconstruction of incomplete data in the static CT. Experimental results demonstrate that the proposed method can effectively eliminate sparse artifacts, uneven artifacts and noise, and can obtain high quality images.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Intensity-based iterative reconstruction for helical grating interferometry breast CT with static grating configuration
    Xu, Jinqiu
    Wang, Zhentian
    van Gogh, Stefano
    Rawlik, Michal
    Spindler, Simon
    Stampanoni, Marco
    OPTICS EXPRESS, 2022, 30 (08) : 13847 - 13863
  • [22] Constrain static target kinetic iterative image reconstruction for 4D cardiac CT imaging
    Alessio, Adam M.
    La Riviere, Patrick J.
    COMPUTATIONAL IMAGING IX, 2011, 7873
  • [23] Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network
    Wu, Dufan
    Kim, Kyungsang
    El Fakhri, Georges
    Li, Quanzheng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) : 2479 - 2486
  • [24] LIR-Net:Learnable Iterative Reconstruction Network for Fan Beam CT Sparse-View Reconstruction
    Cheng, Yubin
    Li, Qing
    Li, Runrui
    Wang, Tao
    Zhao, Juanjuan
    Yan, Qiang
    Rehman, Zia Ur
    Wang, Long
    Geng, Yan
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 181 - 195
  • [25] Image reconstruction from incomplete projections data: A multiresolution modeling approach
    Aravindhan, K
    Rajgopal, K
    TRENDS IN NDE SCIENCE AND TECHNOLOGY - PROCEEDINGS OF THE 14TH WORLD CONFERENCE ON NDT (14TH WCNDT), VOLS 1-5, 1996, : 1789 - 1793
  • [26] Parallelism of iterative CT reconstruction based on local reconstruction algorithm
    Junjun Deng
    Hengyong Yu
    Jun Ni
    Lihe Wang
    Ge Wang
    The Journal of Supercomputing, 2009, 48 : 1 - 14
  • [27] Parallelism of iterative CT reconstruction based on local reconstruction algorithm
    Deng, Junjun
    Yu, Hengyong
    Ni, Jun
    Wang, Lihe
    Wang, Ge
    JOURNAL OF SUPERCOMPUTING, 2009, 48 (01): : 1 - 14
  • [28] Limited View Angle Iterative CT Reconstruction
    Kisner, Sherman J.
    Haneda, Eri
    Bouman, Charles A.
    Skatter, Sondre
    Kourinny, Mikhail
    Bedford, Simon
    COMPUTATIONAL IMAGING X, 2012, 8296
  • [29] State of the Art: Iterative CT Reconstruction Techniques
    Geyer, Lucas L.
    Schoepf, U. Joseph
    Meinel, Felix G.
    Nance, John W., Jr.
    Bastarrika, Gorka
    Leipsic, Jonathon A.
    Paul, Narinder S.
    Rengo, Marco
    Laghi, Andrea
    De Cecco, Carlo N.
    RADIOLOGY, 2015, 276 (02) : 338 - 356
  • [30] Iterative reconstruction reduces abdominal CT dose
    Martinsen, Anne Catrine Traegde
    Saether, Hilde Kjernlie
    Hol, Per Kristian
    Olsen, Dag Rune
    Skaane, Per
    EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (07) : 1483 - 1487