Two-dimensional Jacobians det and Det for bounded variation functions and applications

被引:0
|
作者
Briane, Marc [1 ]
Casado-Diaz, Juan [2 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, IRMAR UMR 6625, Rennes, France
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Seville, Spain
来源
REVISTA MATEMATICA COMPLUTENSE | 2025年 / 38卷 / 01期
关键词
Jacobian determinants; Det and det; Bounded variation function; ODE's flow; Minimization under constraint; Polyconvex energy; WEAK CONTINUITY; ELASTICITY;
D O I
10.1007/s13163-024-00496-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the comparison in dimension two between the strong Jacobian determinant det and the weak (or distributional) Jacobian determinant Det. Restricting ourselves to dimension two, we extend the classical results of Ball and Muller as well as more recent ones to bounded variation vector-valued functions, providing a sufficient condition on a vector-valued U in (Omega)(2) such that the equality det(del)=Det(del) holds either in the distributional sense on Omega, or almost-everywhere in Omega when U is in (1,1)(Omega)(2). The key-assumption of the result is the regularity of the Jacobian matrix-valued del along the direction of a given non vanishing vector field is an element of (1)(Omega)(2), i.e. del is assumed either to belong to (0)(Omega)(2) with one of its coordinates in (1)(Omega), or to belong to (1)(Omega)(2). Two examples illustrate this new notion of two-dimensional distributional determinant. Finally, we prove the lower semicontinuity of a polyconvex energy defined for vector-valued functions U in (Omega)(2), assuming that the vector field b and one of the coordinates of del lie in a compact set of regular vector-valued functions.
引用
收藏
页码:263 / 279
页数:17
相关论文
共 50 条
  • [21] FUNCTIONS OF BOUNDED VARIATION, SUMMABLE FAMILIES, AND APPLICATIONS TO NUCLEARITY
    TERRACHER, PH
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (17): : 987 - 990
  • [22] Regularization by functions of bounded variation and applications to image enhancement
    Departamento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Telecomunicación, Universidad de Cantabria, Av. Los Castros s/n, 39071 Santander, Spain
    不详
    不详
    Appl Math Optim, 2 (229-257):
  • [23] .Characterizing two-dimensional maps whose Jacobians have constant eigenvalues
    Chamberland, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (03): : 323 - 331
  • [24] TWO-DIMENSIONAL DARBOUX FUNCTIONS
    CEDER, J
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (09): : 795 - 802
  • [25] On two-dimensional Bessel functions
    Korsch, H. J.
    Klumpp, A.
    Witthaut, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (48): : 14947 - 14964
  • [26] The motion of vortices in a two-dimensional bounded region
    P. I. Geshev
    A. I. Chernykh
    Thermophysics and Aeromechanics, 2018, 25 : 809 - 822
  • [27] The enstrophy cascade in bounded two-dimensional turbulence
    Kramer, W.
    Clerex, H. J. H.
    van Heijst, G. J. F.
    ADVANCES IN TURBULENCE XI, 2007, 117 : 271 - 273
  • [28] Decaying two-dimensional turbulence in a bounded domain
    Clercx, HJH
    van Heijst, GJF
    ADVANCES IN TURBULENCE VIII, 2000, : 633 - 636
  • [29] A note on two-dimensional transport with bounded divergence
    Colombini, F
    Crippa, G
    Rauch, J
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (07) : 1109 - 1115
  • [30] Two-dimensional random walk in a bounded domain
    Basu, Mahashweta
    Mohanty, P. K.
    EPL, 2010, 90 (05)