Massively parallel sample preparation for multiplexed single-cell proteomics using nPOP

被引:3
|
作者
Leduc, Andrew [1 ,2 ,3 ,4 ]
Khoury, Luke [1 ,2 ,3 ,4 ]
Cantlon, Joshua [5 ]
Khan, Saad [1 ,2 ,3 ,4 ]
Slavov, Nikolai [1 ,2 ,3 ,4 ,6 ]
机构
[1] Northeastern Univ, Single Cell Prote Ctr, Dept Bioengn, Boston, MA 02115 USA
[2] Northeastern Univ, Single Cell Prote Ctr, Dept Biol, Boston, MA 02115 USA
[3] Northeastern Univ, Single Cell Prote Ctr, Dept Chem & Chem Biol, Boston, MA 02115 USA
[4] Northeastern Univ, Barnett Inst, Boston, MA 02115 USA
[5] SCIENION US Inc, Phoenix, AZ USA
[6] Parallel Squared Technol Inst, Watertown, MA 02472 USA
关键词
D O I
10.1038/s41596-024-01033-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell proteomics by mass spectrometry (MS) allows the quantification of proteins with high specificity and sensitivity. To increase its throughput, we developed nano-proteomic sample preparation (nPOP), a method for parallel preparation of thousands of single cells in nanoliter-volume droplets deposited on glass slides. Here, we describe its protocol with emphasis on its flexibility to prepare samples for different multiplexed MS methods. An implementation using the plexDIA MS multiplexing method, which uses non-isobaric mass tags to barcode peptides from different samples for data-independent acquisition, demonstrates accurate quantification of similar to 3,000-3,700 proteins per human cell. A separate implementation with isobaric mass tags and prioritized data acquisition demonstrates analysis of 1,827 single cells at a rate of >1,000 single cells per day at a depth of 800-1,200 proteins per human cell. The protocol is implemented by using a cell-dispensing and liquid-handling robot-the CellenONE instrument-and uses readily available consumables, which should facilitate broad adoption. nPOP can be applied to all samples that can be processed to a single-cell suspension. It takes 1 or 2 d to prepare >3,000 single cells. We provide metrics and software (the QuantQC R package) for quality control and data exploration. QuantQC supports the robust scaling of nPOP to higher plex reagents for achieving reliable and scalable single-cell proteomics.
引用
收藏
页码:3750 / 3776
页数:27
相关论文
共 50 条
  • [21] Single-Cell Proteomics
    Vistain, Luke F.
    Tay, Savas
    TRENDS IN BIOCHEMICAL SCIENCES, 2021, 46 (08) : 661 - 672
  • [22] Single-cell proteomics
    Allison Doerr
    Nature Methods, 2019, 16 : 20 - 20
  • [23] scProAtlas: an atlas of multiplexed single-cell spatial proteomics imaging in human tissues
    Wang, Tiangang
    Chen, Xuanmin
    Han, Yujuan
    Yi, Jiahao
    Liu, Xi
    Kim, Pora
    Huang, Liyu
    Huang, Kexin
    Zhou, Xiaobo
    NUCLEIC ACIDS RESEARCH, 2024, 53 (D1) : D582 - D594
  • [24] Multiplexed microsatellite recovery using massively parallel sequencing
    Jennings, T. N.
    Knaus, B. J.
    Mullins, T. D.
    Haig, S. M.
    Cronn, R. C.
    MOLECULAR ECOLOGY RESOURCES, 2011, 11 (06) : 1060 - 1067
  • [25] Decoding uterine leiomyoma tumorigenesis using single-cell transcriptomics and single-cell proteomics
    Machado-Lopez, A.
    Perez-Moraga, R.
    Punzon-Jimenez, P.
    Llera-Oyola, J.
    Galvez-Viedma, M.
    Grases, D.
    Aragon-Fernandez, P.
    Satorres, E.
    Roson, B.
    Schoof, E. M.
    Porta-Pardo, E.
    Simon, C.
    Mas, A.
    HUMAN REPRODUCTION, 2023, 38
  • [26] Suspendable Hydrogel Nanovials for Massively Parallel Single-Cell Functional Analysis and Sorting
    de Rutte, Joseph
    Dimatteo, Robert
    Archang, Maani M.
    van Zee, Mark
    Koo, Doyeon
    Lee, Sohyung
    Sharrow, Allison C.
    Krohl, Patrick J.
    Mellody, Michael
    Zhu, Sheldon
    Eichenbaum, James, V
    Kizerwetter, Monika
    Udani, Shreya
    Ha, Kyung
    Willson, Richard C.
    Bertozzi, Andrea L.
    Spangler, Jamie B.
    Damoiseaux, Robert
    Di Carlo, Dino
    ACS NANO, 2022, 16 (05) : 7242 - 7257
  • [27] Massively parallel nanowell-based single-cell gene expression profiling
    Goldstein, Leonard D.
    Chen, Ying-Jiun Jasmine
    Dunne, Jude
    Mir, Alain
    Hubschle, Hermann
    Guillory, Joseph
    Yuan, Wenlin
    Zhang, Jingli
    Stinson, Jeremy
    Jaiswal, Bijay
    Pahuja, Kanika Bajaj
    Mann, Ishminder
    Schaal, Thomas
    Chan, Leo
    Anandakrishnan, Sangeetha
    Lin, Chun-wah
    Espinoza, Patricio
    Husain, Syed
    Shapiro, Harris
    Swaminathan, Karthikeyan
    Wei, Sherry
    Srinivasan, Maithreyan
    Seshagiri, Somasekar
    Modrusan, Zora
    BMC GENOMICS, 2017, 18
  • [28] Massively parallel nanowell-based single-cell gene expression profiling
    Leonard D. Goldstein
    Ying-Jiun Jasmine Chen
    Jude Dunne
    Alain Mir
    Hermann Hubschle
    Joseph Guillory
    Wenlin Yuan
    Jingli Zhang
    Jeremy Stinson
    Bijay Jaiswal
    Kanika Bajaj Pahuja
    Ishminder Mann
    Thomas Schaal
    Leo Chan
    Sangeetha Anandakrishnan
    Chun-wah Lin
    Patricio Espinoza
    Syed Husain
    Harris Shapiro
    Karthikeyan Swaminathan
    Sherry Wei
    Maithreyan Srinivasan
    Somasekar Seshagiri
    Zora Modrusan
    BMC Genomics, 18
  • [29] Magnetic nanoparticle–mediated massively parallel mechanical modulation of single-cell behavior
    Peter Tseng
    Jack W Judy
    Dino Di Carlo
    Nature Methods, 2012, 9 : 1113 - 1119
  • [30] Calculating Sample Size Requirements for Temporal Dynamics in Single-Cell Proteomics
    Boekweg, Hannah
    Guise, Amanda J.
    Plowey, Edward D.
    Kelly, Ryan T.
    Payne, Samuel H.
    MOLECULAR & CELLULAR PROTEOMICS, 2021, 20