Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?

被引:0
|
作者
Wang, Chuwei [1 ]
Li, Shanda [2 ,5 ]
He, Di [3 ]
Wang, Liwei [3 ,4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
[3] Peking Univ, Sch Intelligence Sci & Technol, Natl Key Lab Gen Artificial Intelligence, Beijing, Peoples R China
[4] Peking Univ, Ctr Data Sci, Beijing, Peoples R China
[5] Zhejiang Lab, Hangzhou, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Physics-Informed Neural Network (PINN) approach is a new and promising way to solve partial differential equations using deep learning. The L-2 Physics-Informed Loss is the de-facto standard in training Physics-Informed Neural Networks. In this paper, we challenge this common practice by investigating the relationship between the loss function and the approximation quality of the learned solution. In particular, we leverage the concept of stability in the literature of partial differential equation to study the asymptotic behavior of the learned solution as the loss approaches zero. With this concept, we study an important class of high-dimensional non-linear PDEs in optimal control, the Hamilton-Jacobi-Bellman (HJB) Equation, and prove that for general L-p Physics-Informed Loss, a wide class of HJB equation is stable only if p is sufficiently large. Therefore, the commonly used L-2 loss is not suitable for training PINN on those equations, while L-infinity loss is a better choice. Based on the theoretical insight, we develop a novel PINN training algorithm to minimize the L-infinity loss for HJB equations which is in a similar spirit to adversarial training. The effectiveness of the proposed algorithm is empirically demonstrated through experiments. Our code is released at https://github.com/LithiumDA/L_inf-PINN.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Zhao, Yang
    Guo, Liang
    Wong, Patrick Pat Lam
    FRICTION, 2023, 11 (07) : 1253 - 1264
  • [42] Physics-Informed neural network solver for numerical analysis in geoengineering
    Chen, Xiao-Xuan
    Zhang, Pin
    Yin, Zhen-Yu
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2024, 18 (01) : 33 - 51
  • [43] A Physics-informed Neural Network for Solving Combustion Reaction Kinetics
    Zhang, Shihong
    Zhang, Chi
    Wang, Bosen
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (06): : 1872 - 1881
  • [44] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Yang Zhao
    Liang Guo
    Patrick Pat Lam Wong
    Friction, 2023, 11 : 1253 - 1264
  • [45] Physics-informed neural network simulation of thermal cavity flow
    Fowler, Eric
    McDevitt, Christopher J.
    Roy, Subrata
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [46] A Physics-Informed Neural Network-Based Waveguide Eigenanalysis
    Khan, Md Rayhan
    Zekios, Constantinos L.
    Bhardwaj, Shubhendu
    Georgakopoulos, Stavros V.
    IEEE ACCESS, 2024, 12 : 120777 - 120787
  • [47] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [48] Physics-Informed Neural Differential Equation Model
    Chen, Haowei
    Guo, Yu
    Yuan, Zhaolin
    Wang, Baojie
    Ban, Xiaojuan
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (04): : 90 - 97
  • [49] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [50] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59