Jordan left derivations in infinite matrix rings

被引:0
|
作者
Zhang, Daochang [1 ]
Ma, Leiming [1 ]
Hu, Jianping [1 ]
Sun, Chaochao [2 ]
机构
[1] Northeast Elect Power Univ, Coll Sci, Jilin 132012, Peoples R China
[2] Linyi Univ, Sch Math & Stat, Linyi 276005, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
left derivations; Jordan left derivations; column finite matrix rings; infinite upper triangular matrix rings;
D O I
10.1515/dema-2023-0150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R R be a unital associative ring. Our motivation is to prove that left derivations in column finite matrix rings over R R are equal to zero and demonstrate that a left derivation d : T -> T d:{\mathcal{T}}\to {\mathcal{T}} in the infinite upper triangular matrix ring T {\mathcal{T}} is determined by left derivations d j {d}_{j} in R ( j = 1 , 2 , & mldr; ) R\left(j=1,2,\ldots ) satisfying d ( ( a i j ) ) = ( b i j ) d\left(\left({a}_{ij}))=\left({b}_{ij}) for any ( a i j ) is an element of T \left({a}_{ij})\in {\mathcal{T}} , where b i j = d j ( a 11 ) , i = 1 , 0 , i not equal 1 . {b}_{ij}=\left\{\begin{array}{ll}{d}_{j}\left({a}_{11}),& i=1,\\ 0,& i\ne 1.\end{array}\right. The similar results about Jordan left derivations are also obtained when R R is 2-torsion free.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] 2-Local derivations on associative and Jordan matrix rings over commutative rings
    Ayupov, Shavkat
    Arzikulov, Farhodjon
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 522 : 28 - 50
  • [32] Generalized skew derivations as a generalization of left Jordan multipliers in prime rings
    Rania, Francesco
    De Filippis, Vincenzo
    [J]. COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 1806 - 1817
  • [33] Jordan Left Derivations on Lie Ideals of Prime Gamma-rings
    Halder, A. K.
    Paul, A. C.
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2012, 44 : 23 - 29
  • [34] Derivations of the Finitary Triangular Matrix Ring and the Associated Lie and Jordan Rings
    Maltsev, Nikolai V.
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2009, 2 (03): : 319 - 326
  • [35] DERIVATIONS OF RINGS OF INFINITE MATRICES
    Slowik, R.
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3433 - 3441
  • [36] Generalized Derivations and Generalized Jordan Derivations of Quaternion Rings
    Ghahramani, H.
    Ghosseiriand, M. N.
    Zadeh, L. Heidari
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (01): : 305 - 308
  • [37] Generalized Derivations and Generalized Jordan Derivations of Quaternion Rings
    H. Ghahramani
    M. N. Ghosseiriand
    L. Heidari Zadeh
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 305 - 308
  • [38] ON η- GENERALIZED DERIVATIONS IN RINGS WITH JORDAN INVOLUTION
    Miyan, Phool
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 585 - 593
  • [39] A note on Jordan derivations of triangular rings
    Fosner, Ajda
    Jing, Wu
    [J]. AEQUATIONES MATHEMATICAE, 2020, 94 (02) : 277 - 285
  • [40] On the Characterization of Skew Jordan Derivations in -Rings
    Siddeeque, Mohammad Aslam
    Shikeh, Abbas Hussain
    [J]. IRANIAN JOURNAL OF SCIENCE, 2023, 47 (5-6) : 1605 - 1611